
Albrecht Weinert

WP3 progress
report

Integrating WordPress 3 into an existing
website

Rev.: 20.04.2013

Prof. Dr.-Ing. Albrecht Weinert a-weinert.de

weinert – automation weinert-automation.de

Labor für Medien und verteilte Anwendungen (MEVA-Lab) meva-lab.de

Fachbereich Informatik der Hochschule Bochum

Integrating WordPress 3 into an existing website

V01.00, 19.02.2013: unfinished draft

V01.01, 15.04.2013: first ready for public

V01.02, --.--.2013: -

Version: V1.01

Last modified by A. Weinert at 20.04.2013

Copyright © 2013 Albrecht Weinert. All rights reserved. a-weinert.de

Note on the template: There is one common numbering for figures, lists, tables etc. (if present)

Note on version control: SVN URL is https://ai2t.de/svn/albrecht/pub/Wordpress3Integr.odt

Note on publications: See also http://a-weinert.de/publication_en.html ,
http://blog.a-weinert.de/ and
http://blog.a-weinert.de/wordpress3integr/

This document's URL: http://a-weinert.de/pub/Wordpress3Integr.pdf.
 The version there might be newer if this is from elsewhere or on paper.

A. Weinert Integrating WordPress 3 into an existing website 1

http://www.a-weinert.de/weinert/idex.html
http://a-weinert.de/pub/Wordpress3Integr.pdf
http://blog.a-weinert.de/wordpress3integr/
http://blog.a-weinert.de/
http://a-weinert.de/publication_en.html
https://ai2t.de/svn/albrecht/pub/Wordpress3Integr.odt

Table of content
1. Motivation ...3

1.1 Bringing Blog/CM to an existing site – use case ..3
1.2 The desire for an additional CM / Blog component ..4
1.3 Choosing WordPress 3 ...4

2. Requirement ..5
2.1 Basic ..5
2.2 Extra boundary conditions and requirements ..5

3. Implementation – problems – solutions ...6
3.1 Debugging WP3.x ..6
3.2 Integrating it as part of an existing design ...6
3.3 Making all components use ISO-8859-1 ...7
3.4 Making it behave ..8
3.5 Writing an own specialised theme ...8

4. Resume ..9
A Abbreviations ..9

2 Integrating WordPress 3 into an existing website A. Weinert

1. Motivation

WordPress is often used as a Blog or small content management (CM) system just by
downloading the software and putting it into operation, choosing one of dozens available
designs respectively themes. This standard usage is kind of stand alone or from scratch.
Server preconditions given, this approach works quite well and without greater problems or
own development work in most cases.

This report is about integrating WordPress 3 (WP3) with existing web sites and designs.
The task arises when

A) giving an existing (large, mainly static) site a blog or
CM component afterwards

or if

B) a (technically) separate blog and one or some (static) sites
shall have the same design and look and feel.

Paragraphs 1.1 and 1.2 (page 4) describe a motivation example or use case (for A)). They
may be skipped to see the solution and not the rationale of the requirements.

1.1 Bringing Blog/CM to an existing site – use case

A medium sized (>2000 files) website maintained for a customer consisted on mainly static
php, html and xml with client side transforms. The rendering was governed by a 6K css file
and some JavaScript (JQuerry) to have drop down menus and optional image slide shows.

The content, balanced English and German plus a wee bit of French, was completely
maintained by only few authors respectively administrators. Using only Western European
languages all files and the website are 100% ISO-8859-1. Maintaining and editing work is
mostly done within Eclipse using the editors for html, php, xml and so on. As used for
content editing Eclipse was amended with good German spell checking.

All files are under under version control using Subversion (SVN). Common parts of the
(mainly static) content, like parts of the html-header, the page header, navigation, footers
and so on are evacuated to about 40 include files, mostly one for each language used.
The spot to include is marked by a pair of html/xml comments. This system of common
text replacement is elaborated in the sense of single point of truth respectively no repeti-
tion or the DRY principle.

Before deployment to the (Apache) web server

1) the SVN keyword tags (Id HeadURL Date Revision Author) are “beautified” so their
values can be used as part of the web content and

2) said comment pairs (plus the text within) is replaced by the respective replacement
text (include file content).

These two steps are done on the server by the Frame4J tools CVSkeys respectively FuR
controlled by a SVN post commit hook.

For a person accustomed to Eclipse and SVN the pure technical part of any maintenance
is hardly existing reducing the workload to content authoring and copy editing.

A. Weinert Integrating WordPress 3 into an existing website 3

http://ai2t.de/java/docs/frame4j/de/frame4j/FuR.html
http://ai2t.de/java/docs/frame4j/de/frame4j/CVSkeys.html
http://a-weinert.de/frame4j/
http://blog.a-weinert.de/deutsches-worterbuch-fur-eclipse/

 <!-- headStart-common Start --><html><head><!-- headStart End -->
 <!-- headEnd-common Start --></head>
 <body><div><div><div><!-- headEnd End -->/>

Listing 1: Marking the place for replacement text by a pair of comments.

Note: The (also replaced) content within the Start/End comment pair mirrors the minimal
expected structure elements to keep (xml, html, Eclipse) syntax checkers happy.

 ignoreCase=false
 ignoreWS=true
 keepBraces=true
.......
 old5 = <!-- headStart-common Start -->
 end5 = <!-- headStart End -->
 newFile5 = head-start.txt
 keepBraces5=false

 old6 = <!-- headEnd-common Start -->
 end6 = <!-- headEnd End -->
 newFile6 = head-to-body.txt

Listing 2: Excerpt of FuR's property file to control the (post commit) replacements.

1.2 The desire for an additional CM / Blog component

Nevertheless for a small part of the web-site like reports on conferences some more
people wanted to write content and deliver images.

Some of those persons were not able or unwilling to handle the SVN machinery. Some
also disliked to be confronted with some minimal set of HTML. The argument “that there
are good integrated tools” or demonstrating the benefits of an adequately configured Ec-
lipse are hardly accepted – even by people whose area of work suggests the necessary
skills as given.

But alas, experience shows it's of absolute no avail to discuss the underlying attitude:
refusing to learn the basics of a long living language and prevalent tools but attending long
courses about the idiosyncrasies of one special Typo3 installation with sensual pleasure.

So the desire to have a browser access to content management arose for a web site exist-
ing since years.

1.3 Choosing WordPress 3

To implement this request WordPress was chosen. The reasons were:

• good (mostly) long term experiences with the product (2.8.x) as stand alone Blog

• sufficiently lightweight and (hopefully) modifiable to integrate as part of a website

• good browser based editing and media handling for laymen in most cases without
any need for training – quite contrary to e.g. Typo3.

• existence of all infrastructure needed on the server in question:
PHP, mySQL, Apache.

• a sufficient protection / rights management

4 Integrating WordPress 3 into an existing website A. Weinert

http://ai2t.de/java/docs/frame4j/de/frame4j/FuR.html

2. Requirement

2.1 Basic

As said we want to

 A) give a large existing web site an extra blog or CM component or

 B) let technically separate blogs and sites having the same style and look and feel.

And we use WordPress3 in both cases as WP3 can do it well:

It comfortably brings the functionality wanted (see Paragraph 1.3).
It is – really – not just small, but it is no overkill.
And it can flexibly be adapted.

Nevertheless it was foreseen WordPress would be bitchy on some of the indispensable
requirements.

2.2 Extra boundary conditions and requirements

Compared to a stand alone / from scratch WP installation we must consider:

a) WordPress is not to be the blog or the website – only a quite small part of an
existing one – in use case A)

b) the design / the look and feel of the existing site has not to be touched or modified
in direction of existing WP themes / layouts. Quite the contrary:
WP It must adapt to an existing style – in use cases A) and B).
This (and some other reasons) will lead to the creation of an own theme.

c) This theme's (php) page templates must integrate fully in above said development,
version control and deployment scheme of the already existing site. They should
use the same common building blocks, style sheets and tools.

d) Therefore and for other reasons WP generated web content must (use case A))
respectively should (use case B)) use the same coding – ISO-8859-1 in our
examples – as the existing sites *).

e) The texts, contributors, commentators, authors and WP-adminitrators are confron-
ted with, have to meet some minimal professional / business standards. **)

Note *): Not to use UTF-8 but ISO-8859-1 or similar if the content is restricted mainly to West-
ern European languages perfectly makes sense. With text files and snippets in a fitting
8 bit encoding you won't even notice. Bringing UTF to such environment, you get a big
bag of ugly effects, non-working German and French spell checkers being only one of
them.

Note **): This concerns WP's translation facilities mainly for German language. WordPress is
not multi-lingual – you just can set one Blog language by configuration. With some ex-
penditure it can at least be educated to be bi-lingual in the sense of “English” and “not
English”, see below. Luckily this is what is most often needed – de-DE (German) plus
en-GB e.g.

A. Weinert Integrating WordPress 3 into an existing website 5

http://a-weinert.de/pub/Wordpress3Biling.pdf

3. Implementation – problems – solutions

To have WP3 we update the existing Blog(s) (use case B)) or install WP3 into the existing
web space (use case A)) the steps are:

 ● installing WordPress 3.5.0 – updated later to .3.5.1 – in a new directory
 named /blog/ of the web-space,
 ● providing a mySQL schema,
 ● making the due modification to Apache's configuration and then
 ● doing the notorious “5 minutes” initialisation

That's as easy as with the versions before.

3.1 Debugging WP3.x

The routine is deranged by 3.5x seeming much more buggy than say 2.8x. Hence one has
to keep “debug on” and fight with php until none of the (de) bug reports re-appear.

Observation: Googling the report texts seldom leads to a page helping the developer
but to hundreds of company pages exposing these reports to their visitors.

The first step out of the jungle is to replace numerous deprecated functions and parameter
setting. In most of those cases the replacement recipe is directly found within the deprec-
ated code. (Here one doubts the 3.5.x developers ever having used debug= on.)

The next step is to fight the real (hard core) bugs. This mostly involves getting some pre-
condition checks (isset()) in order. In the end debugged were:
wp-includes/comment.php, wp-includes/cron.php,
wp-includes/functions.php, plugins\user-photo\user-photo.php,
<xyzTheme>/contact.php and some more.

3.2 Integrating it as part of an existing design

This integration (use case A)) or adaption (use case B)) is mostly style sheet work. One
has to create a (combined) style sheet integrating the existing one and WP's extra needs.

And it is usually recommendable to write a new theme from scratch mimicing the existing
look. This sounds harder than it was in the end. One only has to muster the discipline to do
it consistently and to start it in spite of dozens of alluring themes available.

 /* Theme: Meva4we
 Theme Name: meva4we
 Theme URI: http://meva-lab.de/
 Description: The 2013 theme for blog.a-weinert.de is fully integrated in the
 sites a-weinert.de and meva-lab.de. It hence uses ... all in one line.
 Author: Albrecht Weinert
 Author URI: http://a-weinert.de/
 Version: 1.00
 Tags: light, one-column, right-sidebar, flexible-width
 Copyright 2013 Albrecht Weinert a-weinert.de
 V.$Revision: 304 $ ($Date: 2013-04-15 11:04:46 +0200 (Mo, 15 Apr 2013) $)
 */
 @import url(http://a-weinert.de/inc/meva.css);

Listing 3: The (new) theme's style sheet.

6 Integrating WordPress 3 into an existing website A. Weinert

After putting WP's extra needs into the site's existing style the theme's css is reduced to
Listing 3. This .css file has to live in the theme's directory. It is, in the first place, a WP “file
header”. WP file headers define a syntax within the first comment to give some (meta)
information available to some WP API functions and in the administrative back end. For a
theme this meta information has to be put in the theme's own style sheet. (Therefore if for
nothing else it is required.)

Secondly the (empty) theme style sheet just references the common style sheet in the last
line. This should be kept, even if our specialised theme (its header.php in most cases) re-
ferences the common style sheet directly.

If there is more in the theme's .css (listing 3. page 6), i.e. if you find css rules, we do not
have a common style for the site and the Blog yet.

By the way: Having static sites and WP Blogs using the same css (and all elements related there)
also alows static pages to use some Blog style elements freely.
That may be quite attractive.

3.3 Making all components use ISO-8859-1

In former versions one could choose the “WordPress encoding” in the administrative back-
end or “dashboard”, perhaps wrongly suggesting it could painlessly changed on the fly. But
doing so usually spelled disaster. That handle is gone in 3.5.x (and rightly so at WP's pre-
sent state).

To get 8859-1 one has to do according settings in the empty database (mySQL schema)
as well as in the configuration files before touching the initial (“five minutes”) configuration.
Forgetting it (requirement d) above) one is in for a complete “throwaway and redo”.

Remark / Warning: So what remained in WP 3.x is WP's complete inflexibility concerning encoding
– much worse than with languages. In our use case B) (i.e. making an existing Blog
look like existing sites) one should refrain from changing the Blog's encoding even if it
is UTF-8 and the site and tools are ISO8859-1. A workaround for common text blocks
is the retreat to stupid US-ASCII as common denominator by using HTML entities.

Additionally many WP programmers, copywriters and translators simply assume UTF-8
being set for all (web) content in spite of possible alternative settings. These hard-coded
texts are not re-encoded or modified automatically. Hence one is forced to search the
UTF-8 doubles and replace them by either

1. ä ö ü Ä Ö Ü ß ê or

2. ä ö ü Ä Ö Ü ß ê …

As English text is unconcerned, the process can mostly be automated.

Approach 1's advantage is readability and spell checkers working. Its minus is being unus-
able in case of stepping back to or alternate use in an UTF setting.

Approach 2's advantage clearly is being encoding independent, albeit unreadable and an-
noying spell checkers. Additionally the HTML entities are not accepted by some browsers
in alt and title tags / attributes, so for image and tool tips one has to resort to 1. (The same
applies if the text blocks are used as .xml.)

A. Weinert Integrating WordPress 3 into an existing website 7

3.4 Making it behave

This (extra requirement e page 5) was the point most underestimated with regard to la-
bour. In German one has to address persons, one is neither close friend nor near relative
to, in third person plural instead of the obvious second person. It is “Sie sollten ...” instead
of “Du sollst ...” (“Thou shalt ...”). That difference is almost completely gone in English
(except John Steinbeck's Cannery Row) but still present in many other languages. As you
might have suspected all WP's text translations to German treat you as pal – i.e. using the
“Du”.

A consequent “Du” instead of “Sie” could perhaps be sold as cultural background of the
underlying software. But yet WP's English addressing of the users has a tendency to be
extra cool by using some ghetto like slang (“Slow down cowboy ..”). As the German open
source scene is in many respects worse than all others you find wordings much less ad-
equate.

As most of the texts may pop up to the user / customer it was tried to fit them all to inter-
personal respect. WP's translation files to German add up to 1 MB text. So having done
that to about 80% was an immense work. It was slightly complicated by the missing tools
and documentation about WP's translation approach.

To give the answer: It is php's .mo/.po-approach using the full English clear text as key to the par-
ticular translation. And the tool needed is poedit(.exe) (V1.5.4 April 2013).

3.5 Writing an own specialised theme

As suggested a few times above we get our requirements best fulfilled by writing an own
theme. There are some tutorials on that and it is easier than one may think if one under-
stands the basics. A minimal theme is a new subdirectory in /conten/themes/ accordingly
named just containing style.css (compare listing 3. page 6) and an index.php. A more real-
istic furnishing is listing 4.

 21.03.2013 06:58 1.647 404.php
 12.04.2013 17:27 3.309 archive.php
 22.03.2013 16:09 5.032 comments.php
 20.03.2013 18:02 3.300 footer.php
 19.03.2013 13:13 6.934 functions.php
 15.04.2013 11:07 4.629 header.php
 22.03.2013 16:09 1.931 index.php
 12.04.2013 17:27 1.816 page-archives.php
 19.03.2013 16:09 947 page-links.php
 19.03.2013 16:09 1.875 page.php
 22.03.2013 16:09 2.633 search.php
 19.03.2013 13:13 1.929 sidebar.php
 22.03.2013 16:09 1.885 single.php
 15.04.2013 11:07 564 style.css;

Listing 4: The (new) theme's files.

Of course, there are cons to writing an own and specialised theme:

• There are so many (hundreds) nice themes around; why re-invent the wheel?

• The specialised theme is not flexibly configurable, changing or adding something
means programming (and not just ticking check-marks in the dashboard).

8 Integrating WordPress 3 into an existing website A. Weinert

The pros are

• The specialised theme is not configurable but flexibly programmable to the exact
requirements given.

• The (php) code involved in the end is smaller, better to understand and faster than
a configurable army knife. That is not important in most cases – but with some pro-
viders it brings you within php CPU time limits.

• Extra functionality brought in later, like e.g. bilingualism, is done by relatively few
extra lines of code instead of bringing in tons of plug-in code, besides the pains of
choosing the right plug-in and the risk not to be underestimated.

4. Resume

Regarding the overall functionality and usability WordPress is a good product. It is well ad-
aptable to the requirements reported here. Being open source and free of licence fees is a
big advantage. Anyway WP is good enough to get a very broad user base and to even
conquer some commercial application.

On the other hand some people involved strive to affirm all unfair prejudices against open
source – at least so it seems at some points. But … that's the point were the openness
and flexibility comes in again: We can change and improve it to met our needs – or we can
have other people do that work for us.

A Abbreviations

API application programmer's interface

CSS cascading style sheets

CM content management

DRY don't repeat yourself! as approach

HTML Hypertext Markup Language

JAXP Java API for XML Parsing

JS Java Script aka ECMA script

PHP PHP Hypertext Preprocessor; Server side web programming language

WP WordPress

XML eXtensible Markup Language

XSD XML schema definition

XSL eXtensible Stylesheet Language

XSLT XSL Transformation

A. Weinert Integrating WordPress 3 into an existing website 9

http://a-weinert.de/pub/Wordpress3Biling.pdf

