
Albrecht Weinert

Raspberry for distributed control

 A b s t r a c t and I n t r o d u c t i o n

This technical report is about installing and using Raspberry Pis as little distributed servers espe-
cially for embedded process control applications, often in co-operation with other little machines in
the same (W)LAN. That means: With the applications in question we always control external
devices. And we do that almost always via Pi's I/O ports. Additionally we use MQTT and Modbus
devices (screw terminals A&B in Fig. 1) as well and sometimes VoIP telephones (by Asterisk).

This report’s predecessor “Raspberry for remote services” [33] was first published 2016 as a
laboratory handbook for process control set ups with then Pi 2. Until July 2024, it was continuously
used, updated and expanded based on experiences with Pi0, Pi3 and Pi4 (very seldom Pi1 or Pi2.)
on a wide spectrum of real control applications, some of them in 24/7 use for years.

Some modules, libraries and tools we investigated and reported on originally turned out to be unfit
to our real time requirements and we had stopped using. Hence, in October 2024, I decided to re-
move topics unused in the last 4..8 years, update and restrict to newer Pi OS and tools. The chap-
ters were re-ordered under a new title as [31]. For omitted topics still see [33].

Fig. 1: “Raspi”4 with I/O

The operating systems will be a Raspberry Pi OS lite. a Debian/Ubuntu derivative. Pi OS per se is
no real time OS. Nevertheless, obeying some caveats described here, the lite variant may well be
used in applications where max. latencies of 200 µs are tolerable.

With careful C programming we can implement PLC like applications with 1 ms as fastest cycle
based on a Pi OS lite. Under some conditions I/O programs in Java ([32]) are feasible.

Motivation and goals

One might use a Raspberry 4 or even 3, as a little low performance PC, nevertheless well outper-
forming last century's early PCs. And as PC substitute one would nowadays perhaps better use a
Pi5. Such little workstations are not our topic here.

And to state it clearly from beginning: Until now (Feb. 2025) we recommend not to use Pi5 for
process IO or headless embedded control systems; see the Pi5 warnings on page 21.

Raspberry for distributed control 2 Albrecht Weinert

Our Raspberries will be configured as a device for special purposes, often embedded and with
some process IO. Distributed co-operating Pis will communicate over a private protected (W)LAN.
Workstations, PCs etc. on that LAN will be used for human observation and control.

Monitor, keyboard and mouse will hardly ever be present on our process control Pis. Maintenance
and installation jobs can be made via remote access (by putty or ssh); observation and control can
be implemented by web interface (Apache and CGI)..

Following that route we will we will always get a headless controller that

● boots quickly and robustly at power on

● starts all its applications and/or services automatically

● runs 24/7 and has good real time performance

● fits, connects and re-connects robustly to its LAN and/or WLAN

● connects to process I/O via GPIO, SPI, RS232/445, private LAN, 1-wire or other

● provides administrative/service access remotely via ssl/ssh/putty and if applicable
 human process operation and observation via Web interfaces by a web server

● provides access to files via ftp (FileZilla, WinSCP)

● decent comfortable cross platform working environment using Eclipse and GCC tools.

Note: Looking up those points we find us quite near the properties we must have in a “real” server;
compare the Fujitsu Siemens RAID examples in [29] (notwithstanding the latter being a 1000
times heavier). Hence, some solutions and procedures may look astonishingly alike.

On the content

In Part I we describe the basic installation and commissioning with Raspberries.

 Part II is about process IO, communication and real time services. We look at hardware
 interfaces, GPIO handling, timing, latencies, threading and cyclic tasks.

In Part III we deal with additional hardware and some exemplary real use cases.

Using names

Names and addresses used here (and in [27..31]) are not fictitious. This helps bringing examples,
really working and proven, of commands, files, outputs etc. – without errors introduced by obfus-
cating. Of course, you will have to adapt IP addresses, names numbers etc. to your environment
and needs, even when this will not always be explicitly mentioned.

For References and Abbreviations please see the Appendix (page 73)., Refer to [29] for some
Linux and server basics, abbreviations and else, also used here.

Prof. Dr.-Ing. Albrecht Weinert is founder and director of
weinert-automation.

He developed safety critical and highly available automation systems
with Siemens AG and was Professor of Computer Science
at Bochum University of Applied Sciences.

 a-weinert.de

Rev. 63 (SVN) 19.04.2025 Photos by A. Weinert

https://a-weinert.de/

Raspberry for distributed control 3 Albrecht Weinert

Table of Content

 A b s t r a c t and I n t r o d u c t i o n..1

Motivation and goals ..1

On the content ..2

 P A R T I The headless Pi ..5

Preparing the SD-card ..5

SD-card: save and restore ..6

 The size problem ...7

 First commissioning ..7

Enable WLAN – or disable it ..9

 Force IPv4 ...9

Getting a decent directory listing ..10

Update the Pi OS ...10

 The keyring problem ..10

User interfaces ..11

 putty ..12

 ssh – the putty alternative..13

 Apache 2.4 ...14

 Installation ...14

 A cause of trouble ...17

 Installing PHP 8 ...19

Enabling file access ..20

 SFTP – FileZilla ...20

 SFTP – WinSCP ..20

Pi5 warning regarding pigpio and BCM2835 libraries ..21

Cross-compile C for Raspberry from a powerful workstation ...22

 Eclipse ..25

 Command line – make project ...25

Part I's results ...27

 P A R T I I I/O and process communication ...28

The pigpio(d) library ...28

PWM and RC servos on every GPIO ...30

Resume for piGpioD and a look on other GPIO libraries ...31

Other protocols (also) for process IO ...32

 Modbus ..33

 libmodbus ..34

 MQTT ..38

 MOSQUITTO ...39

Raspberry for distributed control 4 Albrecht Weinert

 libmosquitto ...39

Part II's results ..40

 P A R T III Process Periphery and control...41

Using the GPIOs ..41

An application as service ..50

 rc.local ...50

 cron ...50

 Mimic a service – start stop restart enable disable ...51

 Making a library ...52

Process IO hardware ..52

 LEDs and buttons – direct IO ..53

 Speakers and beepers ..54

 Relays ...55

 Power transistors ...56

 Hardware for serial communication – RS485 (232) ..56

 Serial impertinences ..58

PoE – power over Ethernet ..59

Communication ..60

1-wire ..60

Real time ..61

 Absolute timing ..62

 Latency and accuracy ...62

 Cycles and threads ...63

Threading and synchronizing ...63

Co-operating applications ...64

 Shared memory ...65

 Semaphore sets ..66

Watchdog ...66

 GCI programs ..67

 Data exchange with AJAX & JSON ..69

Getting Web data – cURL ...69

Asterisk ...70

The result – and where we are ...71

 A p p e n d i x ..73

Miscellaneous commands ..73

Use nano without syntax highlighting ...74

Abbreviations ..78

References ...79

Part I 5 Albrecht Weinert

 P A R T I The headless Pi

The OS images mostly used are variants of Pi OS, successor of Raspbian.
For servers and process control with real time requirements we strongly recommend the “lite”
variant and having no GUI nor graphical tools. Standard Linuxes call that a “server distribution”.

Warning: GUIs with pointing devices do definitely spoil Pi OS’s real time performance essential for
our control applications. Hence, our Pis with “lite” OS come without keyboard, mouse and monitor,
keyboard. Computers without such devices are called “headless”.

Part I’s basic installation gives us a Pi with fixed IP address(es) we can handle, control and
observe remotely. So we can put it to its (embedded) dwelling and connect to its (process) IO.

Preparing the SD-card

Raspberry's OS and the file system usually reside on a µSD card – without the “µ” for very old Pis
not used here. New Pi OSs can also be on a SSD-drive; this features we did not (yet) use on our
embedded systems. On one Pi4 installation we added a 2T SSD with an USB-adapter as extra
storage for a SMB service (as a tiny NAS).

On embedded systems use a SD-card of suitable size and speed – scrapping here for a long
running server application with logs and critical timing is wrong. On the other hand too large cards
can be annoying when reading, writing and checking images.
Note **): 64GB with 200/140MB/s would take about 14 minutes. Slower cards get in range of hours.

To prepare Raspberry's OS and the file system we use Raspberry Pi Imager (figure 2) to choose a
suitable Pi OS version, make the basic settings and write that image to the card. Formatting will be
done in the process. Just put the SD-card in an up-to-date USB-adapter and start the imager.

Fig. 2: rpi-imager.exe

In the first step (figure 2) you chose the Raspberry type, the OS and the card adapter’s drive, in
our example Pi3b, Pi Os lite 64bit and “Gener...G:”. Do check the drive chosen to be absolute sure
it is the SD card in question and you don’t need any data there.
Hint: If you have both 32 and 64bit Raspbians you need at least two different C cross tool
 chains (see “building for different target OS” page 36).
In the next step edit the settings: name, WLAN, user:password, SSH and no telemetry.

When having all checked and the appropriate settings, start the formatting and imaging. It will take
some time. When ready, un-mount the device (if the exemplary G: is still present), remove the card
from the PC and put it in the target Raspberry.

But before going on it is essential to be able to handle saving and restoring our Pi’s SD cards.
There are pitfalls.

Raspberry for distributed control 6 Albrecht Weinert

SD-card: save and restore

For the basic installation we prepared the [µ]SD card with rpi-imager.exe. We inserted the
card into the respective Pi, logged in and did the basic settings. We may start installing program-
mes and transferring data files. All work – until now or then – resides in the tiny SD card. If it is
damaged electrically or crucial parts are damaged by a program violating its memory bounds all
that work can be lost.

Fig. 3: DiskImager

The only rescue can be saving total images in a (big) file on a PC or disk station and when needed
from there on another SD card of equal size and speed. On a Windows PC we can do this inter-
actively with the “Disc Imager” (figure 3): C:\util\ImageWriter\Win32DiskImager.exe

To save the actual state
 ● shutdown and un-power the Raspberry,
 ● remove the card and insert it to your laptop/PC
The same slot or an actual USB adapter as used for programming will do.

To save as .img file with Win32DiskImager chose a target file and click “Read” (German: “Lesen”),
see figure 3. The target file will usually not exist, just chose an appropriate name.

The Win32DiskImager.exe works on Windows 11. But, alas, there are limitations:
 ● it must be started as admin! (One has to accept it.)
And occasionally – but then very annoying – we had the following effects
 ● it had to be shutdown before every next operation (even with the same card)
 ● sometimes the SD card must be present before the start
 ● typing or copying the file name , D:\temp\test.img in the example fig. 3, into

the text field may fail. In that case click the blue folder icon, find the best fitting file
 in the opening explorer window and then edit the line “Image-Datei” (image file).

To write the saved image to another SD-card, the same size as the original should work.
A bigger one is always usable, and may be the rescue if Win32DiskImager complains on size.

Warning: When hitting the size problem and ticking “write anyway” Win32DiskImager
crashes leaving the target unusable. Even when reporting a normal end we
had cards never booting in the Pi

Caveats for Win32DiskImager:
 ● Be extremely careful with “Write”.

 Double check the drive letter. Win32DiskImager can kill your system (as admin).
 ● Be patient 64GByte µSD Read – Write – Verify may take 1h20min.

Part I 7 Albrecht Weinert

 The size problem

Most probably, its cause is no two [µ]SD-card types having the same size.

 ● Do not go ahead when getting complaints on the operation planned.
 Click exit – especially when hitting the size problem, see Fig. 4.

Fig. 4: The size problem

If you go ahead on a some percent size misfit the card will not work in the Pi even if “Verify” says
OK. Do not believe in "The extra space does not appear to contain data" in Fig 4, even when here
the 64GByte source µSD was 95% empty and the missing size is less than ½%.

For the size problem as such Win32DiskImager is not to be blamed. We used dd with the same
cards on an Ubuntu laptop, it finished the read and write operations (taking ages) without crashing
but complaining on the non fitting size afterwards [sic!]. The card didn’t work in the Pi either.
Win32DiskImager would have saved you hours (when taking the warning seriously).

Writing an image file read from one SD card to another smaller one did always fail – at least we never
experienced it otherwise.
A bigger size as destination will work. But you will not persevere with than in the long run.

Tip 1: If you want e.g. some µSD cards for saving n working states, and having m for experimental
improvements and r for reserve, do have/buy n+m+r cards of same make and size. Requiring same
speed was not necessary in out lot of ScanDisk 32G, as all had 124735488 sectors (see Fig 4), We did
a complete re-install as we could not get other 32G µSD cards with 125493136 sectors.
Tip 2: Choose a reasonable size but do not think too big (128G when 16G would be enough, e.g.).
Consider also: Each SD card image file will be as large as the card with Win32DiskImager.

 First commissioning

These are first steps to bring in a new OS with a freshly prepared [µ]SD card:
 ● take the not powered target Raspberry and put the card in
 ● check your DNS server for your new Pi's IP addresses. In a distributed control system
 we strongly recommend fixed LAN and/or WLAN IP adresses. Tell your DNS server,

router, “Fritzbox” … to do so:
 ● connect power (usually by USB 5V 2A..4A)
 ● fire up putty or ssh command and connect to that IP

Note: If the machine or name was used before it might be necessary to delete its entry
 in C:\Users\<name\.ssh>\known_hosts and trust the machine on next log-in.

When all went well, you'll be prompted to log-in (with user:password you choose in the imager).

Putty will warn you on a security breach; do accept the ssh fingerprint.

With working (W)LAN and in a network with a DHCP server you should check the Raspberry's
usable IP address(es) by ifconfig.

In case of success you have an empty working Pi with one user. Congratulations.
“Empty” in our case means just the programs and libraries belonging to the lite version chosen.

Raspberry for distributed control 8 Albrecht Weinert

 A Note on the nano editor on putty

With a “headless” Pi putty or ssh will be most often used as remote console. See the chapters
below. Try using ssh user@thePi in the cmd.exe. If that console works you will most probably
prefer it and avoid the problem dealt with here. As (remote) text file editor nano is most often
preferable. Some aspects of its handling are a bit awkward but all in all it is easy to use. It may be
the best non graphic/no mouse/headless Linux text editor.

When trying to navigate with (numeric pad) arrow keys one may get an “unbound key” error
instead of a cursor movement. Here is not nano the culprit; it’s putty
On the putty icon do Ctrl + right-click to bring up the context menu . Then
 ● Select "Change Settings..."
 ● Select Terminal → Features in the left-hand navigation tree
 ● Check "Disable application keypad mode"

And when at putty change the colours to a high contrast dark on light setting. Otherwise nano’s
syntax highlighting will display some text items in almost the same colour and brightness as the
background. nano’s programmers must be able to edit unreadable text. And as many text editor
programmers they libidinously include all parsers they can get hold of to add multi colour syntax-
highliting at their gusto. Hint: Start nano by
nano -Ynone myfile.txt
to get rid of the feature.

 Have more than one user

Formerly Pi OSs came with a pre-defined user:password = “pi:raspberry”. It is most strongly
recommended not to use this combination known by all hackers. Cases were reported of well
meaning software (updates) eliminating that user even when it had another password. If the
murdered user one was only one the machine is practically unusable. We did experience some
losses of user pi. Fiddling with the µSD may get you a one time log in. If that does not work, one
falls back to a saved image of the machine saved – or to a complete re-install. Due to those
experiences we recommend additional users with sudo privileges to have still putty and ftp:

sudo useradd -u 1001 -g 1000 -c "sweet's substitute" -m pius
ls -la /home/pius
sudo passwd pius
sudo usermod -a -G sudo pius
sudo usermod -a -G sweet pius
sudo usermod -a -G adm pius
sudo usermod -a -G dialout pius
sudo usermod -a -G cdrom pius
sudo usermod -a -G audio pius
sudo usermod -a -G video pius
sudo usermod -a -G plugdev pius
sudo usermod -a -G netdev pius
sudo usermod -a -G games pius
sudo usermod -a -G users pius
sudo usermod -a -G input pius
sudo usermod -a -G render pius
sudo usermod -a -G netdev pius
sudo usermod -a -G spi pius
sudo usermod -a -G i2c pius
id pius
id sweet

The last two commands allow an easy check of both users belonging to the same groups.

mailto:user@thePi

Part I 9 Albrecht Weinert

Note: Traumatised by the dead of some user accounts pi we strongly recommend having two
sudo users (sweet & pius not pi, e.g.). Feel free to add an extra standard user to play with.

Note2: Besides being better known to hackers than to new users, “raspberry” is and was
never a good password.

Rule: Avoid passwords (and perhaps names also) typed on keys misplaced on
US keyboards nor special ones on German or French keyboards.
Example: There typing raspberry could fail while rasperrz succeeds.

Note2: That keyboard (layout) hassle won’t occur with headless access – provided
your workstation resp. PC by itself has no keyboard troubles as for example
a German PC with a French keyboard).

Enable WLAN – or disable it

The Pi3, Zero, 4 and 5 have WLAN on board, Pi1 has not. The build in WLAN's only disadvantage
is the antenna being fixed to the board. Encasements with good protection, shielding and heatsinks
may render it unusable. While LAN (with DHCP) is working out of the box, WLAN will require some
settings. This is best done by command line, as well described in [53]. On the other hand, when
having prepared headless WLAN access above in rpi-imager, no further action may be needed.

In other cases or problems a most useful command is listing visible WLANs by:
sudo iwlist wlan0 scan

In doubt if the WLAN is wlan0 use ifconfig. In our case it didn't see 5 GHz cells. The Pi3 (not
3+) supports 2.4 GHz only, even if the Broadcom chip should do both. From the iwlist scan output
we chose a WLAN in acceptable quality (Micha42Netz in the example here) to connect to.

Cell 01 - Address: 5C:49:79:6C:03:81
 Channel:11
 Frequency:2.462 GHz (Channel 11)
 Quality=42/70 Signal level=-68 dBm
 Encryption key:on
 ESSID:"Micha42Netz"
 Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s;
 Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s
 Mode:Master
 IE: IEEE 802.11i/WPA2 Version 1
 Group Cipher : CCMP
 Pairwise Ciphers (1) : CCMP
 Authentication Suites (1) : PSK

sudo ifconfig wlan0 down/up disables/enables the WLAN. To disable it permanently put
@reboot sleep 10; ifconfig wlan0 down into the crontab file (sudo crontab -e).

Caveat: Loosing the WLAN as only connection (no cable, Pi0 e.g.) is as catastrophic
 as loosing the last/only user.

 Force IPv4

Even when all your LAN addresses are IPv4, you may notice wlan0 using IPv6 only, even when the
access points live in the same LAN and the DHCP server distributes IPv4 to all. Add the lines

net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv6.conf.lo.disable_ipv6 = 1

to /etc/sysctl.conf by sudo nano /etc/sysctl.conf.

Raspberry for distributed control 10 Albrecht Weinert

Getting a decent directory listing

The commands dir, ls and even variants ls -la etc. produce unsatisfactory output to put it mildly. It’s
just ugly and information hiding. Hence type
nano ~/.bash_aliases and add the following three lines:

alias dir='ls -lAh --time-style=long-iso'
alias diR='ls -lARh --time-style=long-iso'
alias sudo='sudo '

Those lines could have been put into .bashrc also, but .bash_aliases can be copied or
transferred to other user accounts with less risk of spoiling other individual settings.

Changes in .bash_aliases and .bashrc will have an effect at next login.

Update the Pi OS

Having the very basic configurations done you should have a first thorough update:

sudo apt-get update # <-\
sudo apt-get upgrade # _ loop until stable
sudo apt autoremove
sudo apt-get dist-upgrade

After commissioning and running a productive 24/7 server dist-upgrade should be handled with
care. Instead of apt-get … you may get additional results by apt… .

While using sudo here you might see a warning like:

raspbian/dists/bookworm/InRelease:
 Key is stored in legacy trusted.gpg keyring (/etc/apt/trusted.gpg),
 see the DEPRECATION section in apt-key(8) for details.

If so and if you want to clear problem now go ahead with “The keyring problem”.
It can very well be done later. So you may skip the topic for now.

 The keyring problem

To solve the problem, type: sudo apt-key list to get

Warning: apt-key is deprecated.
Manage keyring files in trusted.gpg.d instead (see apt-key(8)).

/etc/apt/trusted.gpg

pub rsa2048 2012-04-01 [SC]
 A0DA 38D0 D76E 8B5D 6388 7281 9165 938D 90FD DD2E
uid [unknown] Mike Thompson (Raspberry Pi Debian armhf ARMv6+VFP)
<mpthompson@gmail.com>
sub rsa2048 2012-04-01 [E]

/etc/apt/trusted.gpg.d/raspberrypi-archive-stable.gpg

pub rsa2048 2012-06-17 [SC]
 CF8A 1AF5 02A2 AA2D 763B AE7E 82B1 2992 7FA3 303E
uid [unknown] Raspberry Pi Archive Signing Key
sub rsa2048 2012-06-17 [E]

Part I 11 Albrecht Weinert

For the (two in our case) keys listed, generate this command for the first:

sudo apt-key export 90FDDD2E | sudo gpg --dearmour -o /etc/apt/trusted.gpg.d/mikethom-key.gpg

Here 90FDDD2E are the last 8 hex digits (no space here!) in the long hex line. The file name is
derived (freely) from the text. Check the result by:

sudo apt-key list
ls -lAh --time-style=long-iso /etc/apt/trusted.gpg.d

-rw-r--r-- 1 root root 1.2K 2024-10-25 17:11 mikethom-key.gpg
-rw-r--r-- 1 root root 1.2K 2024-07-04 02:05 raspberrypi-archive-stable.gpg

Checking “before and after” gives a hint to the background:
Once upon a time, all keys used to reside together in one file /etc/apt/trusted.gpg. Now this
is deprecated. PiOS likes to find each key in a separate file in /etc/apt/trusted.gpg.d. When
a key needed isn’t in that directory it inspects the past’s one file – and will complain even if found.

User interfaces

As stated and verified, we can do real time process control with precise 1ms cycle time with a
Raspberry Pi 3 and Raspbians / PiOSs from Jessie on – as long as we do not install an OS with
graphical HMI.

In other words: Take the lite variants, only!

As long as we use the little machine as headless server all is well – and installing graphics spoils
all real time cyclic process control endeavour. Linuxes on other OSs with graphics do this by
dozens of busy extra services all running around. Adding graphics to a non graphical OS like
Unix/Linux means adding a lot of foreign objects in various variants.

The standard remote access to our headless little machine is putty or ssh.
And yes: It is possible to write a console program (to be started by and usable via putty/ssh) that
waits on a signal, gets data via shared memory and displays them on the console. (An example is
hometersConsol.c.) It is also possible to get input from such console program and put the values
and commands via shared memory to the process control application.

This "remote HMI by putty as shared memory coupled application" works perfectly reliable – but looks as
stone age as the nano editor. It is quite natural to want this functionality in a web interface, and this at least *)
in the same local (W)LAN where the headless process control machine server can be “puttyed”.
Note *): One should specify “only” instead of “at least” for safety and security. Graphics just by being
installed impedes even modest real time applications. The detrimental effect needs nobody doing
anything locally nor X-remote.

On the other hand an Apache 2.4 with static web pages, pages with JavaScript and CGI, directory
listings serving files has no [sic!] measurable detrimental effect on said real time performance. Your
web design may even play with boxes, tables, pictures etc.. And we had no problems with 5 active
web clients at the same time in the LAN or even remote via VPN. But one should not exaggerate
the number of active web clients.

At first sight this may seem astonishing. But this approach, used judiciously, only transfers small
amounts of data – partly static and cacheable – and puts all rendering and graphical toils to the
workstation, laptop, tablet, telephone or whatever web-client. And in case of VPN the extra
communication and encryption work is done by the router (Fritz!Box e.g.) and the remote client.

Hence, we use Apache 2.4 – on our process control Raspberries – for remote HMI and putty or
ssh for administrative work.

Raspberry for distributed control 12 Albrecht Weinert

 putty

With ssl enabled, from a workstation or laptop in the same network connect to your Raspberry with
ssh using putty(.exe). And making a good putty configuration is well worth the trouble. Think of nice
and readable colours, a good font, window title etc.. When satisfied give the configuration a recog-
nisable name, like e.g. rasp61. Best use the Raspberry's hostname.

To re-use the configuration command
putty -load meterPi -l sweet

Change the “sweet” when wanting another user account or omit the “-l name” option to interactively
entering the user. Optionally make an icon with the command. When just entering putty you get a
command window

Fig. 5: Putty’s command window

If you want to copy, modify and reuse such configuration you may use the putty GUI by
a) select a saved session and click [Load] (or just click on the session)

 b) optionally modify settings
 c) optionally [save], optionally after typing a new session name.
 d) [open] connect (Without modifications you may just double click on the session name.)

To save and transfer configurations across workstation borders, find them on Linux at
 ~/.putty/sessions/
and on Windows in the registry at
[HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Sessions\<ses.name>]

To list your putty session setting type

 reg query HKCU\Software\SimonTatham\PuTTY\Sessions /s | grep Sessions

and get something like:

HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Sessions\meterpi
HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Sessions\pi4ast
HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Sessions\pi4java
HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Sessions\pi4nas
HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Sessions*** pi *** (manymore)
HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Sessions\ubu1u1

Part I 13 Albrecht Weinert

Should a pure Windows user ask (what) where is grep, one answer is here:

D:\temp>where grep.exe
C:\util\msys32\usr\bin\grep.exe

Here is an example of a session's entry - far from complete:

D:\temp>reg query HKCU\Software\SimonTatham\PuTTY\Sessions\pi4ast
HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Sessions\pi4ast
 Present REG_DWORD 0x1
 HostName REG_SZ 192.168.178.144
 LogType REG_DWORD 0x0
 LogFileClash REG_DWORD 0x0
 LogFlush REG_DWORD 0x1
 SSHLogOmitPasswords REG_DWORD 0x1
 SSHLogOmitData REG_DWORD 0x0
 Protocol REG_SZ ssh
 PortNumber REG_DWORD 0x16
 CloseOnExit REG_DWORD 0x1
 WarnOnClose REG_DWORD 0x1
 PingInterval REG_DWORD 0x0
 PingIntervalSecs REG_DWORD 0x0
 TCPNoDelay REG_DWORD 0x1
 TCPKeepalives REG_DWORD 0x0
 TerminalType REG_SZ xterm
 TerminalSpeed REG_SZ 38400,38400

 ApplicationKeypad REG_DWORD 0x0
....ANSIColour REG_DWORD 0x1
 Xterm256Colour REG_DWORD 0x1
 BoldAsColour REG_DWORD 0x0
 Colour0 REG_SZ 0,0,0
 Colour1 REG_SZ 0,0,0
 Colour2 REG_SZ 192,192,192
 Colour3 REG_SZ 255,255,255

To save a) all putty settings or b) a single session open the registry editor, navigate to that branch

a) HKCU\Software\SimonTatham\PuTTY
b) HKCU\Software\SimonTatham\PuTTY\Sessions\pi4ast

 ssh – the putty alternative

On Windows you can connect the command shell (usually cmd.exe) with a Pi by

ssh sweet@meterpi && REM parameter is user at machine (name or IP)

The presentation usually outperforms putty. nano will show no unreadable light-yellow on hellgelb
colours. Ending the ssh session with logout returns to the Windows shell.

A disadvantage is the shell instance (cmd.exe) being the terminal and hence out of use until the
session ends. On the other hand it is possible to scroll back to the closed “ssh terminals”.

Raspberry for distributed control 14 Albrecht Weinert

In seldom cases you might also be annoyed by the following ssh behaviour:
1.) At every start it complains on not to be able to create directory /home/<winGuy>/.ssh.
2.) At every session start it asks for the acceptance of the Pi’s fingerprint.
 Putty does this on the very first session, only.

It seems ssh (most stupidly) is trying to store the Pi’s fingerprint on the Pi under the account of the
windows user, not existing there. It’s totally crazy. By the way providing the wanted directory with
all rights to everyone on the Pi is no good idea – and it does not help.
If, like me, haunted by that look for ssh.exe:

D:\temp>where ssh.exe
C:\util\msys32\usr\bin\ssh.exe
C:\Windows\System32\OpenSSH\ssh.exe

This shows us having two ssh.exe, a Windows one and a ported but badly adapted Linux tool – the
latter being on a better place on the PATH – with good reasons. Remedies are:

 a) call C:\Windows\System32\OpenSSH\ssh.exe [parameters] directly every time
 b) delete C:\Windows\System32\OpenSSH\ssh.exe
 c) put @C:\Windows\System32\OpenSSH\ssh.exe %* in a new file C:\bat\ssh.bat

I recommend (and took) solution c):
D:\eclipCe18-12WS\rasProject_01>type C:\bat\ssh.bat
@C:\Windows\System32\OpenSSH\ssh.exe %*

 Apache 2.4

As said on our Pis a web server’s main purpose is to provide a HMI for process control, delivering
log and documentation files. All this is fixed content set/changed via FTP.
For the HMI communication and (dynamic) process control pages we use CGI, AJAX, JASON and
JavaScript (see below), but not PHP except perhaps in one homeopathic dose.

And we are on a protected, non public LAN. Hence, we need neither domains, virtual hosts nor
https. We address those Pis by their name or fixed IP address, provided by the own DNS / DHCP.
Hence we can (should) live with a very simple Apache setting with generous access for and to
Apache.

 Installation

Apache 2.4 is (apt-get) provided in a reasonable way since the Raspian Stretch distribution.
Installing Apache starts by

sudo apt update
sudo apt upgrade
sudo apt install apache2 -y

In this state the web server delivers only the “Apache2 Debian Default Page” (by the configuration
000-default; see /etc/apache2/sites-available/). According to our Pi’s name we want a site “meterpi”
(en lieu de “default”. Change to your naming accordingly. We prepare it by:

dir /etc/apache2/sites-available/
sudo mkdir /var/www/meterpi
sudo chgrp sweet /var/www/meterpi
sudo chown sweet:sweet /var/www/meterpi
dir /var/www/
sudo chgrp sweet /etc/apache2/sites-available/
sudo chmod g+rwx /etc/apache2/sites-available/
dir /etc/apache2/

Part I 15 Albrecht Weinert

We left Apache’s main configuration file untouched, except stripping most of the original comments
to get an overview:

/etc/apache2/apache2.conf 20.11.2024 Albrecht Weinert
changes: strip most comments see them in the original file
This is Apache's main configuration file on meterpi

DefaultRuntimeDir ${APACHE_RUN_DIR}
PidFile ${APACHE_PID_FILE}
Timeout 300
KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 5
User ${APACHE_RUN_USER}
Group ${APACHE_RUN_GROUP}
HostnameLookups Off
ErrorLog ${APACHE_LOG_DIR}/error.log
LogLevel warn

IncludeOptional mods-enabled/*.load
IncludeOptional mods-enabled/*.conf
Include ports.conf

<Directory />
 Options FollowSymLinks
 AllowOverride None
 Require all denied
</Directory>

<Directory /var/www >
 AllowOverride All
 Require all granted
 Options +Indexes +FollowSymLinks
</Directory>

AccessFileName .htaccess
<FilesMatch "^\.ht">
 Require all denied
</FilesMatch>

LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-
Agent}i\"" vhost_combined
LogFormat "%h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\""
combined
LogFormat "%h %l %u %t \"%r\" %>s %O" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

IncludeOptional conf-enabled/*.conf
IncludeOptional sites-enabled/*.conf

The reason for this readable compactness will get clear in "A cause of trouble" below. By

nano /etc/apache2/sites-available/meterpi.conf
we made a site configuration file according to our Pi’s name:

Raspberry for distributed control 16 Albrecht Weinert

/etc/apache2/sites-available/meterpi.conf 20.11.2024 17:30
configuration for http://meterpi
<VirtualHost *:80>

 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/meterpi
 CustomLog ${APACHE_LOG_DIR}/access.log combined

 HeaderName /logs/logsHeader.html
 ReadmeName /logs/logsFooter.html
 IndexOptions SuppressHTMLPreamble FancyIndexing FoldersFirst
 IconsAreLinks HTMLtable ## This is one line !!!
 IndexIgnore logsHeader.html logsFooter.html

 <Directory /var/www > ## redundant, if in apache2.conf
 AllowOverride All
 Require all granted
 Options +Indexes +FollowSymLinks
 </Directory>

.<-- ~/var/www
/ ## link to load site via user space
/var/www/meterpi/index.html
/server
/icons
/include
/cgi .--> /var/log/apache2/
/logs/apache2 ___/ ## link to show Apache's logs, also
\..<-- ~/logs ## link to access (all) logs lacally. too

 <Directory "var/www/meterpi/cgi >
 Options ExecCGI
 SetHandler cgi-script
 </Directory>

 <Directory /var/www/meterpi/logs >
 AllowOverride All
 Require all granted
 Options +Indexes +FollowSymLinks
 </Directory>

 Alias "/icons/" "/var/www/meterpi/icons/"
 </VirtualHost>

Enable your and Apache’s [sic!] access to it’s log files by
sudo chmod -R a+r /var/log/apache2
sudo chmod a+x /var/log/apache2
ln -s /var/log/apache2/ /var/www/meterpi/logs/apache2
and the site access from user space by
ln -s /var/www/meterpi/ ~/var/www
and optionally make a local ~/logs by
ln -s /var/www/meterpi/logs logs

Part I 17 Albrecht Weinert

And, finally, we switch the Apache configuration by
sudo a2dissite 000-default
sudo a2ensite meterpi

To make configuration changes work use one of
sudo service apache2 stop & sudo service apache2 start
sudo systemctl reload apache2
the second being much faster, but causing troubles in few cases.

With this configuration all went well and .htaccess files did their work, like e.g. (shortened):

/var/www/meterpi/server/.htaccess
$Revision: 237 $ $Date: 2024-11-20 18:11:02 +0100 (Mi, 20 Nov 2024) $

IndexIgnore logsHeader.html logsFooter.html
IndexOptions +SuppressHTMLPreamble

AddDescription "minimal server info by PHP" hello.php
AddDescription "show most things PHP knows" info.php

and

/var/www/meterpi/logs/.htaccess
$Revision: 237 $ $Date: 2024-11-20 18:31:02 +0100 (Mi, 20 Nov 2024) $

IndexIgnore logsHeader.html logsFooter.html
IndexOptions +SuppressHTMLPreamble

ReadmeName /logs/logsFooter.html
HeaderName /logs/logsHeader.html

AddDescription "Web server log files" apache2
AddDescription "page view log" apache2/access.log* ## Note above
AddDescription "http server errors" apache2/error.log* ## symlinks

AddDescription "Ereignisse und Werte" .txt
AddDescription "Kamerabilder" img
AddDescription "Türkamera Schnappschuss" cam

AddDescription "Ereignisse, Änderungen" meterpiDiary
... and more

As we use the web server for process observation and control we like to see all relevant logs by
http://meterpi/logs and in the directories shown there.

With the simple configuration indicated here we got everything working, look and feel like it did for
about 6 years in a 24/7 process control job.

Alas, this a long story told from from its short (happy) end.

We had started as we did many times and with great success before: We just copied all our
Apache data and configuration files from an equal or similar system to their respective new
locations – and expected all or at least almost all would to work.

Well – almost nothing did.

 A cause of trouble

In the previous Installation (Raspbian Stretch/Buster running 24/7 for some years) we had
~/var/www as document root and all automated update activities are programmed to manipulate
this document tree. (~/ was /home/pi and is /home/sweet/ now.) The automated updates
respectively first provisions worked at once but the web server did not.

http://meterpi/logs

Raspberry for distributed control 18 Albrecht Weinert

Apache seemed not to read most of its configured directories and not to follow symbolic links. Most
.conf files and all .htaccess had no effect as one ugly directory listing demonstrated.

Internet research brought no clear causes or remedies. Some recipes brought nasty side effects
but not the healing. There were speculations on new options like SymLinksIfOwnerMatch which
should be turned on instead of FollowSymLinks. Most tips didn’t help. And nothing trustworthy on
the causes of the new troubles was found. The only clear search result was:

 ● There are many fellow sufferers.

 ● From Jessie + then Apache to Bookworm + current Apache
 Apache’s behaviour seemed to have changed drastically.

Nightmarish hours of fruitless experiments and refined searches gave this impression:

 ● Apache does its start up work as root and gets its basic files as such. (Not new, never mind).

 ● Apache delivers web content and reads the relevant files as user www-data. (Not new, too)

 ● Apaches reading of these files is restricted to /var/www (+ subdirs).
 and to /var/log (+ subdirs)

 ● The second one only worked after putting user www-data additionally in the group adm by
 sudo adduser www-data adm

 ● The access to those (two) directory trees can be further restricted by file access rights
 and directives – but never ever expanded.

These restrictions and perhaps more are obviously hardcoded in Bookworm or Apache. And, alas,
there is no option +OneSiteClosedShopOnlyFewTrustedUsers to bring back the old
freedom. One rule is

 ● When the user www-data can’t enter a directory or can’t read a file forget all fiddling with
 directives, symbolic links etc. This file will never be part of your web site.

The accesses needed, wanted, planned shall – if in doubt – be tested as user www-data.
 ● If a test fails in spite of sufficient access rights for www-data or its groups,
 abandon all hope and change your file/directory structure.

For those tests you need no running Apache server, it might well be stopped.
But I had to do something absurd for those tests:

 ● log in as user www-data

I never ever thought of it – and others didn’t either and it never was provided:
www-data has no (known) password and no shell. To mimic it by

sudo su www-data

is not sufficient. You might either give www-data a password plus a shell. This I did not fearing
side effects. The other way to the shell needed are su options.

sudo su -l www-data -s /bin/bash

will do the trick. And to repeat the important rule

 ● If you as this user www-data can’t read a file needed for your web site and if you can’t
 change that quickly, easily and without unwanted side effects move that file elsewhere.

My new “world view” on Apache and said rules lead to a – quite simple in my humble opinion –
structure and configuration files described above. This “world view”, gained by painful experience,
may partly be not correct or missing important aspects. Corrections are welcome.

But, as a hypothesis, it did work very well.

Part I 19 Albrecht Weinert

 Installing PHP 8

In our process control projects we did all server side dynamic content generation, including AJAX
with GCI and used C for GCI programs. Doing so, one stays consistently in one language and our
cross compiling workstations with IDEs etc.
Hence we never (!) use PHP for its original purpose of generating complex pages from databases
on embedded Pis.

But for completeness and for tiny task as displaying the Pi’s name in same static html page used
on several Pis (see below) we sometimes do the basic installation by:

sudo apt install php8.2 libapache2-mod-php8.2

As of Oct. 24, 8.2 seems the latest version for PiOS. If the installation fails on legacy / 32 bit PiOS
try php7.4.

Check the PHP installation by

php -v

PHP 8.2.7 (cli) (built: Jul 20 2023 18:02:54) (NTS)
Copyright (c) The PHP Group
Zend Engine v4.2.7, Copyright (c) Zend Technologies
 with Zend OPcache v8.2.7, Copyright (c), by Zend Technologies

To get Apache acquainted with PHP we made (by nano) a file
/var/www/meterpi/server/hello.php :

<?php
 echo "The server ", gethostname(), " is online at ";
 echo date("H:i:s"), " (UTC) on ", date("Y-m-d") ,".
<hr />";
 echo "<small>(A. Weinert, 26.10.2024)</small>";
?>

It will show the Pi’s name and date and time (UTC not local) by http://meterpi/server/hello.php :

 The server meterPi is online at 16:13:36 (UTC) on 2024-10-26.

 (A. Weinert, 26.10.2024)

Hint: For Apache2 using php (and not displaying the source code) a reboot might be necessary.
Re-loading or re-starting (with php modules enabled, of course) didn’t work in some cases.

Pi’s name and date and time (UTC not local) are server site data here put on the html page by
Apache via PHP at every (re-) load. Loading this page is as fast as a purely static one and hurting
a real time process was never observed by us. But . . .
Now make a small add-on to hello.php as /var/www/meterpi/server/info.php :

<?php
 echo "The server ", gethostname(), " is online at ";
 echo date("H:i:s"), " on ", date("Y-m-d") ,".
<hr />
";
 phpinfo();
 echo "You are on ", gethostname(), ".";
 echo " <small>(A. Weinert, 16.11.2024)</small>";
?>

Browsing to this file by http://meterpi/server/info.php provides a lot of information – more as one
should show to everybody or as can be printed here. And we saw loading the page the very first
time took more than 40s giving the impression of a dead web server.

Anyway, be cautious with server side work on your tiny “Apache on Pi” site!

Raspberry for distributed control 20 Albrecht Weinert

Enabling file access

For administrative and programming work remote file access from workstations is essential.
Accessing headless / GUI-less systems that way, you'll get decent editors and (on Windows) an
operational clipboard handling worth the name.

Most Linux distributions for Raspberry, like Raspbian, will not have a FTP server. But almost all will
have SSH. This offers remote file access by protocol sftp. SSHFS, FileZilla and WinSCP *) can
handle that as clients. Hence, no FTP server installation on Raspbian will be needed.
Note *: Windows' ftp.exe can't – but on Windows you may have the excellent WinSCP.

 SFTP – FileZilla

You really should have FileZilla on your Ubuntu and Windows workstations. (You may even have
FileZilla on a graphical Raspbian.) On Linux PCs install it by:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install filezilla

On Windows download and install the newest Filezilla.

Now set up FileZilla as client: Open FileZilla, go to site manager, make a new site and name it
accordingly, say “raspi61”.

In general setting do: host = 192.168.89.61; protocol: sftp login: normal, sweet, 0123.
In “advanced” tick “bypass proxy”, when your workstation and Pis share a local network.

That's it. Connect should work.

Tip: If getting “connection refused” and if all else – WinSCP, SFTP,… – works with
 your Pi but not Fillezilla, try
 server manager → … → Advanced → Server type = Unix instead of “autodetect (default)”.
This made Fillezilla show fingerprints and ask if OK instead just refuse the connection.

For every other Pi just copy and modify IP and name. Enjoy
 ● disconnect and re-connect working perfectly
 ● comfortable view/modify integration with text editor set (best Editpad on Windows)
 ● see and explore all files from root (/) on, not just /home/sweet/

The last point allows to comfortably view /etc/apt/sources.list (with Editpad on Windows) and copy
its content without ado by clipboard.

Modifications in the editor on the (automatic) local copy will be possible, but in FilleZilla's mirroring
the changes back will fail for files with root:root permissions only. But we always can see, work on,
copy, use clipboard etc. on multiple windows in a comfortable environment.

One workaround for modifying system files is opening a putty connection in parallel with FileZilla
and transfer system files to be comfortably worked on to and (sudo) from a user working directory.

 SFTP – WinSCP

WinSCP is one of the best FTP client programs – not for giving us the n + 21st graphical FTP but
as a most powerful command line program and for its automated batch processing capabilities.

To install it, download the .zip file of a portable build, unpack it and move the three files

19.04.2017 14:44 282.960 WinSCP.com ; console, only, recommended
19.04.2017 14:44 18.905.808 WinSCP.exe.. ; console and GUI
29.05.2017 18:40 14.497 WinSCP.ini

to a path directory (C:\util\ in our case).

WinSCP.com will put you to the command line client. Play with it starting with 'help', 'open',
'close' and 'exit'. Some find WinSCP a bit bitchy on first encounter. If so, don't give up – once you
master it you won't miss it any more.

Part I 21 Albrecht Weinert

winscp.com /script=progTransWin

will transfer two programs from the actual directory to a (Raspberry Pi) target machine by the
WinSCP script progTransWin. Scripts can be parametrised and in the end used in a generalised
transfer recipe in a (Eclipse) C make project; see the downloadable examples given in Part II.

transfer two programs to the target machine
Copyright 2017 Albrecht Weinert weinert-automation.de
$Revision: 2 $ ($Date: 2017-05-29 18:37:55 +0200 (Mo, 29 Mai 2017) $)
open sftp://sweet:0123@192.168.89.67
cd bin
option batch continue
option confirm off
put gnBlinkSimple -preservetime -permissions=775
put rdGnSimpleBlink -preservetime -permissions=755
exit

Listing 1: WinSCP script “progTransWin” for batch transfer of two programs.

Note: Looking at the Part II example's enhanced script and the make file you'll notice again that we
found no Linux/Ubuntu equivalent. No free FTP command line tool for Linux with WinSCP's flexibility,
features and professional quality seems to exits.
We tend to blame our incapacity to search for such Linux programs. On the other hand we even found
expert comments saying WinSCP is keeping them with Windows.
What we got as nearest to WinSCP's elegance – and have often used for automated FTP transfers
from Linux servers in the past – is LFTP. On the other hand recurring fingerprint/certificate refusals with
sftp:// and parametrising with make variables may drive you nuts – all this a no topic with WinSCP.

On Windows 10 a single file may be transferred by command line:

scp notes.txt sweet@pi61:/home/sweet/notes/

As there’s no option to give scp the password that command is hardly usable for batch processing. But
therefore we are quite happy with WinSCP scritps.

Pi5 warning regarding pigpio and BCM2835 libraries

In all our Pi process control applications we used the piogpio(d) library ([61]..[63]) since many years
on all Pi models 0 to 4. Our good reasons see at at the beginning of Part II “I/O, page 28.

But be warned: As of now (February 2025, [70]) there is no pigpio library for the Pi5.

The cause are significant incompatibilities mainly in the IO hardware and (memory mapped) addressing
between Pi5 and all others. Hence, pigpio for a Pi5 will never be compiled from just the same C source.
It would be a separate branch and probably it might not be fully compatible. Additionally Pi5’s radical
changes are reported to be poorly documented. In the end all previous IO software is broken.
Additionally, the C cross build toolchains, working for all other Pis are broken, not only for IO but also
for just “Hello world”.

In a sense the current (?) lack of a Pi5 library won’t hurt: Using an expensive and power hungry Pi5 for
(embedded) control applications is seldom a good choice. Usually, even the Pi4 is overkill here.

Nevertheless, the lack of a pigpio(d) library for Pi5 and its incompatibility is a severe setback, to put it
very mildly.

Rudimentary tests of binary process IO attached to Pi5 can be done by pinctrl (included in PiOS).
For example
 pinctrl set 7,8,25 op && pinctrl set 7,8,25 dh
e.g., turns GPIOs 25, 8 and 7 (being the even pins 22, 24, 26) ON as output.

Raspberry for distributed control 22 Albrecht Weinert

Cross-compile C for Raspberry from a powerful workstation

In the very basic example (Listing 2) we use the piogpio(d) library ([61] ..[63]). The reasons for it and
the installation are described at the beginning of Part II “I/O and process communication”, page 28,
where it belongs. Install it now or skip the example until done.

/** (Listing 2) \file gnBlinkSimple.c (2024-11-12)
 A very first program for Raspberry's GPIO pins
 Copyright (c) 2024 Albrecht Weinert
 weinert-automation.de a-weinert.de
 This is a most simple GPIO pin output program using pigpio(d).

 Compile on Pi by: g++ gnBlinkSimple.c -o gnBlinkSimple -lpigpiod_if2
 and run by: ./gnBlinkSimple

 Compile, build and transfer on Windows by:
 arm-linux-gnueabihf-gcc -I./include -c -o gnBlinkSimple.o gnBlinkSimple.c
 arm-linux-gnueabihf-gcc -I. gnBlinkSimple.o --output gnBlinkSimple.elf -lpigpiod_if2 -lpthread
 cp gnBlinkSimple.elf gnBlinkSimple
 winscp.com /script=progTransWin /parameter sweet:0123 targetPi bin gnBlinkSimple
*/
#include <stdio.h>
#include <pigpio.h>
#include <pigpiod_if2.h> // set_pull_up_down set_mode gpio_write
#include <unistd.h>

// 40 pin con | GPIO number excerpt from include/arch/config_raspberry_03.h
#define PIN37 26

#define LEDgn PIN37 // LED gn 1 active is attached to Pin 37
#define ON 1 // true On An marche go. // exc. from include/baseTyCo.h
#define OFF 0 // false Off Aus arret stop halt.
#define uMS 1000 // 1ms is 1000 us
int thePi; // the Pi handle for pigpoid

int main(int argc, char* argv[]){
 printf(
 "\n Blink green LED on Pin 37 \n"
 "gnBlinkSimple.c R.01 12.12.2024 Albrecht Weinert \n\n");
 int blinkS = 3600; // blink for 1h

 thePi = pigpio_start(NULL, NULL); // connect to pigpio daemon(local, 8888)
 if (thePi < 0) { // initialise pigpio daemon failed
 printf(
 "\ncan't initialise IO handling (piGpioD) \n"
 "gnBlinkSimple.c Error / return code 99 \n\n");
 return 99;
 } // can't initialise piGpioD (the essential gpIO library)

 set_mode(thePi, LEDgn, PI_OUTPUT);
 while(--blinkS) { // green
 gpio_write(thePi, LEDgn, ON);
 usleep(500 * uMS); // 500ms gn
 gpio_write(thePi, LEDgn, OFF);

Part I 23 Albrecht Weinert

 usleep(500 * uMS); // 500ms dark
 } // while endless 1 s loop
 printf(
 "\nstopped blinking the LED on Pin 37 \n"
 "gnBlinkSimple.c end (return code 0) \n\n");
 return 0;
} // main()

Listing 2: gnBlinkSimple.c

Also with a headless Pi, it is possible to transfer C-sources of GPIO programs (like the example
gnBlinkSimple above, listing 2, page 22) to the Pi or even type/edit them there by putty/ssh & nano.
Then one can translate and build them on the Pi with command (given also in the comment):
g++ gnBlinkSimple.c -o gnBlinkSimple -lpigpiod_if2 -lpthread

Transfer the executable binary to a directory in the path (~/bin e.g.) and run it. This gives a first im-
pression and shows a base for going further to useful and greater projects. But now its also time to
pause and re-think tooling and deployment:
 ● Very few of us like to develop software on a GUI-less Raspberry with local tools

and stone age editors (nano being the best of them).
 ● Or when adding the GUI, only few would like to handle IDEs, version control,
 documentation generators and all else on a Raspberry (besides from having killed
 even modest real time capabilities).
 ● At least this will be true for those of us using all this and more

in all comfort and speed on their powerful Windows (or Ubuntu) workstations.

The pre-condition to develop C software for Raspberries on Windows is being able to cross-com-
pile and cross-link. Therefore we download a “Prebuilt Windows Toolchain for Raspberry P” from
http://gnutoolchains.com/raspberry/, e.g.:

23.05.2017 17:06 773.928.611 raspberry-gcc4.9.2-r4.exe

Run this (or a newer version) to

 ● install at C:\util\WinRaspi

 ● make no links for duplicate files
(we're on Windows, links exist and do work there, but no one will expect seeing one)

 ● add C:\util\WinRaspi\bin\ to the path or let installer do it
 It makes sense, even if no one likes extending the PATH by every install.

To test this best make an empty directory,
 ● have our .c source (gnBlinkSimple.c, listing 2) in a working directory and
 ● cd there.

Then use the Windows commands given in the listing. Hint: In such “one source file only” case
without need for extra information compile and build may be shortened to:

arm-linux-gnueabihf-g++.exe gnBlinkSimple.c -o gnBlinkSimple
 -lpigpiod_if2 -lpthread

You'll get the compiled and linked runnable gnBlinkSimple in no time.
Transfer it to the Raspberry, cd there, make it executable if not so and start by

chmod 755 gnBlinkSimple
gnBlinkSimple &

It works! A program made on a Windows PC does GPIO on a Raspberry. Well, it just blinks one
LED for one hour – but this is the entry.

arm-linux-gnueabihf-g++ and arm-linux-gnueabihf-gcc are the equivalent to
plain g++ and gcc we used on the Raspberries.

http://gnutoolchains.com/raspberry/

Raspberry for distributed control 24 Albrecht Weinert

 Note on the prefixes arm-linux-gnueabihf- and aarch64-linux-:

These confusing prefixes are used for cross tool-chains: They are unique prefixes for the target
processor (architecture) and specific library sets. When setting up a new cross compile project in
your GCC enabled Eclipse you will be asked for a tool path and a tool prefix; here it would be:
C:\util\WinRaspi\bin and “arm-linux-gnueabihf-”, for 32 bit Raspbians and
C:\util\winRaspi64\bin and “aarch64-linux-”, for 64.
With Eclipse and make you may handle both on your Windows workstation.

 Note on the g++ or gcc choice:

Both gcc and g++ are GNU compilers respectively tool-chain drivers, doing almost the same. g++
treats .c files as C++ source while gcc expects and handles plain C. In the case of our IO example,
listing 2, both work and both produce an executable of almost the same length and content.

To round up our (Windows) cross-compile tool chain we should also have a make file under-
standing at least make clean and make all. See more in chapter – make project (p. 25).

 A note on Windows:

Evidently, we prefer Windows on powerful development workstations – with Java, Eclipse, Open-
Office, GNU tools, SVN etc.. We have all liberty of open tools, while enjoying Windows' comfort
and professionalism: domain and network file system integration, decent powerful explorer (not
changing its name with every upgrade) with tool integration e.g. for SVN (tortoise), decent text
editors (Editpad), common clipboard support and so on. And (almost) all just works fine.

With Ubuntu, more than once, dragging files to shells suddenly stopped them working or changed
its behaviour. Unclear, pure text or no clipboard support is a good recipe to drive Linux users mad.
Experiencing regular total crashes or loosing tools on upgrades of Ubuntu and derivatives, one is,
alas, constantly shooed back to Windows.

Well this happiness with Windows plus open tools did last up to Windows 7 professional respecti-
vely Windows Server 2008 R2 enterprise. Windows 10, at its beginning, brought first disappoint-
ments: It was slow (on hardware very happy with its predecessors) and at first unreliable.

The less controllable updates / upgrades did render installed tools inoperable. Nevertheless, even
when finally forced to “upgrade” to W10 professional and other hardware, we stayed there. The
good news is: All our tools (Eclipse, Gnu, SVN, Git, Java, doxygen, AVR, …) were kept working
almost always by just moving all binaries to the new Windows installation*). And even the Explorer
was still SVN aware **). In between, we accepted the impertinence of being forced to Windows 11
and partly new hardware and licences, again.

On the other hand, almost all what we describe for Windows can be (and was) done on a powerful
Ubuntu workstation, too. And yes: Most Windows have their "drive nuts" potential, for example, the
dangerous faking directory and file names, when accessing the file system graphically, like
showing the fake name like “Programme” (German) for “Program Files”, which won’t work in tools
and scripts.

But the comfort, stability and usability balance is positive. Hence use Windows, Ubuntu or what
ever you like as your cross-development platform.

Note *): Those cross toolchains portable as binaries to other Windows worked for Pi4 over the
years as well as for all other Pis (0..3). The only exception is the Pi5 (see p. 21).

Note **): If the svn icons in the explorer are gone type regedit.exe .
Goto HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
 CurrentVersion\Explorer\ShellIconOverlayIdentifiers
and kill all entries not needed – in my case all not beginning with Tortoise.

Background: On updates Windows has the habit of floating this node with icons of applications the
user should install and surrender to – but stubbornly will not. Additionally there is a low limit of the
number of entries the explorer will consider when building a file list.

Part I 25 Albrecht Weinert

 Eclipse

Now (cross-) developing on a powerful workstation, we want, the comfort of a powerful IDE.
Evidently, our choice is Eclipse, used since years for Java projects, Web, AVR C and much more.

Put your sources, like listing 2, page 22, for example in Eclipse's project folder. Best make the
folder and the copies before making the new cross-C project. Set tool path and a tool prefix as said
above and enjoy Eclipse's support and comfort.

Well, a little work on make files and project setting will be unavoidable.

A reliable source of trouble are Eclipse's automatically generated make files, which notoriously fail.
Before stepping into (great!) configuration trouble to get Eclipse’s taste of make to work, drop the
generated make files and write an own makefile which Eclipse would use with targets all and clean.

Thereby you get

 + immense flexibility considering targets, devices and else
 which in the end will often be needed,

 + building and cleaning automatically by scripts
 or by just running make by command line without starting or even needing the IDE

 ▼ involved with the ill syntax and semantic of the make tool.

So we make the appropriate changes in project → settings C/C++ → build and add a makefile to
the project. And while we're at it we put the exemplary project in a SVN repository.

 Command line – make project

We use one main makefile plus about 50 (make) include files describing the handling of the
target machine makeTarg_DNSname_settings.mk. The target file names among other
things the Pi type leading to including the fitting make_raspberry_piType_settings.mk
file. Finally, the program to be build and uploaded is described in an include
makeProg_programName_settings.mk.

08.01.2025 18:51 16.992 makefile Listing 3
18.12.2024 12:27 1.450 makeTarg_meterPi_settings.mk
07.01.2025 19:09 1.537 makeTarg_pi4Ast_settings.mk
18.12.2024 12:27 1.481 makeTarg_pi4cam_settings.mk
18.12.2024 12:27 1.128 make_raspberry_00_settings.mk
18.12.2024 12:27 909 make_raspberry_01_settings.mk
18.12.2024 12:27 896 make_raspberry_02_settings.mk
18.12.2024 12:27 893 make_raspberry_03_settings.mk
18.12.2024 12:27 1.123 make_raspberry_04_settings.mk
18.12.2024 12:27 1.163 make_raspberry_05_settings.mk
18.12.2024 12:27 1.096 makeProg_gnBlinkSimple_settings.mk
18.12.2024 12:27 1.505 makeProg_growattReadSimple_settings.mk
18.12.2024 12:27 1.691 makeProg_growattRead_settings.mk
18.12.2024 12:27 1.089 makeProg_helloCrossWorld_settings.mk
18.12.2024 12:27 1.428 makeProg_homeDoorPhone_settings.mk
18.12.2024 12:27 992 makeProg_hometersConsol_settings.mk
18.12.2024 12:27 1.889 makeProg_hometersControl_settings.mk
18.12.2024 12:27 1.409 makeProg_www_settings.mk
18.12.2024 12:27 656 progTransWin and some more

Listing 3: Some make files (sources on demand)

Raspberry for distributed control 26 Albrecht Weinert

By this mechanism you may compile and build a program by, e.g.
make PROGRAM=growattReadSimple TARGET=growPi clean all

and upload it to the target machine by, e.g.
make PROGRAM=growattReadSimple TARGET=growPi progapp

The latter command would compile and build also if not yet done.

The non existent pseudo program www, respectively makeProg_www_settings.mk, would
upload the web files for the Pi’s Apache web server.

make PROGRAM=www TARGET=growPi progapp

With all sources in a wide Eclipse screen and this make mechanism you get very fast turn around
cycles when developing Pi programs.

Another example, including some of the help commands:
make help
make help_comm
make clean all
make PROGRAM=gnBlinkSimple clean all
make PROGRAM=gnBlinkSimple TARGET=thePi progapp

The last two commands generate our little Raspberry IO program gnBlinkSimple.
And by the command displayed by the last make command, we do the transfer.

winscp.com /script=progTransWin /parameter sweet:0123
192.168.178.87 bin gnBlinkSimple

As already said: We stay with the "old" command line make and do not let Eclipse take over with
Eclipse make projects.

 Eclipse – troubles and hints

 SVN client chaos

With development projects we still prefer Subversion (SVN) over Git in most cases. On commit you
can get any plain text file (like a source) marked with the revision and date of this individual file’s
last changes. You won’t get this feature with git push.

One trouble with Eclipse is putting in a decent SVN client. SubClipse made the least trouble. And
there were problems of different client versions with in-compatibly different structures of local
working copies. You may well have two or more SVN clients on your workstation: command line,
TortoiseSVN (explorer plug-in), SubClipse (eclipse plug in) etc, see “our configuration”. Fortunately,
in the last years those compatibility troubles vanished. May be, the success of Git brought the
yearly changes in SVN protocols and internal data structures to a welcome rest. Anyway, if you
have a stable compatible state between all your SVN servers and clients – do not change a thing.

Our current configuration:
 ● eclipse.exe Eclipse IDE for C/C++ Developers Version: 2018-12 (4.10.0) [sic!]
 ● Subclipse 1.10.13 + Subversion Client Adapter 1.10.3 tigris.org
 ● svn.exe SVN 1.8.10-SlikSvn-1.8.10-X64 Aug 2014
 ● dto. Tortoise svn, version 1.14.3 (r1914484) Dec. 2023
 ● arm-linux-gnueabihf-gcc.exe (GCC) 4.9.2
 ● make.exe GNU Make 4.3 Built for i686-pc-msys (2020)
 ● doxygen.exe 1.9.5 (2f6875a5ca481a69a6f32650c77a667f87d25e88)
 ● pdflatex.exe pdfTeX 3.141592653-2.6-1.40.26 (TeX Live 2024)

Not young any more, but … “running” – and running well.

 Eclipse marking non-existent errors

This problem hits mainly, but not only, cross-compile, cross-build projects:
While “make all” directly on the shell or indirectly in Eclipse by “build project” goes with zero errors

Part I 27 Albrecht Weinert

and warnings – and yields a usable result – Eclipse marks the sources with non-existent errors
and warnings and loads of red and yellow marks …. This problem haunted us for a long while in
the past but went away beginning with Eclipse CDT IDE Oxygen, 4.7.0, June 2017. If still affected
read the subchapter corresponding to this one in [33].

The tip “do not let Eclipse make your make files” seems still valid. And additionally: Make your
main “makefile” having valid defaults for all parameters. It must build the main or the actually
worked on part of your project without extra parameters. And having that in your own hand getting
multiple cross tool chains for different target Pis working is no vodoo.

But before getting too enthusiastic on Oxygen: For the AVR projects in the same workspace up-
dating to Oxygen (with AVR plug-in) led to a catastrophic failure with > 1000 false errors.

Note 1: To emphasize the last point, projects used successfully for years got a useless IDE by just
upgrading Eclipse. Eclipse versions good for one target may fail on others.

Note 2: An IDE for C or any other language marking false errors and warning is worse than none.
When marking errors or warnings, correctness and consistency with the target tool chain has the
absolute top priority. Speed – wrong answers fast – is less than secondary.

 Cross tooling summary

Now we can successfully
 ● cross-compile/cross-develop with

 ● GNU-tools,
 ● using Eclipse (Oxygen) with make, or
 ● make (alone / on shell or automated batch)

 ● bringing all under version control, here SVN
 ● having all on Windows (or almost all on Ubuntu)
for our Raspberries and even
 ● upload the program just build from Windows to the Raspberry,

almost *) automated by make.
So, we can go on to utilise Raspberry Pis in a professional development environment.

Note *) on almost: At any point in past make.exe stopped being able to run winscp.com
scripts. That is probably not make’s fault but a security “improvement” of
winscp.com which slipped through our precaution “Never change a running
programme”. The only remediy was: Let make print instead of execute the
command and copy it to cmd.exe by hand.
Tips to get rid of this disability welcome.

Part I's results

We can install a usable OS and tools on Raspberries. We provided all basic tools and set up
(human) communication and file transfer. We can save and restore the current complete µSD card
state of our ”little servers”. And we know how not to run into the dreadful “size problem”.

The basic installation gave us a Pi with fixed IP address(es) we can handle, control and observe
remotely. We may have put it to its destined location and/or connected it to its (process) IO.

Hence we could do the “program – install – test” cycles to get it to its “real” work.

Therefore we will establish the means for I/O and process communication in Part II. The most
basic one will be the using of general purpose IO pins (GPIO) of our Raspberry. We may have
prepared this already for sake of the very basic example gnBlinkSimple (listing 2, page 22).

Otherwise let’s do it now and perhaps come back to gnBlinkSimple.c.
Note: This example is in Part I instead of II to demonstrate local and cross building.

Experience with our zoo of embedded Pis showed that having very similar and good
 ● accesses ● tools / services
 ● drivers & libraries ● look and feel
is a great help in the long run. Doing the basics right and re-usable pays.

Raspberry for remote services 28 Albrecht Weinert

 P A R T I I I/O and process communication

The pigpio(d) library

As said above, pigpio(d) is our preferred approach to Raspberry IO and the only one we use for
real control applications – except on a Pi5, see the warning on page 21.

Other IO libraries considered before do burden the production code with the trouble to
 ○ initialise the GPIO (memory) usage,
 ○ adapt to changing (virtual) addresses as well as
 ○ the fighting with access rights
or in a certain sense worse
 ○ giving users the rights for standard IO with all libraries and approaches.

No decent OS offering any protection will let user code do IO, as did former Raspbians. With them
accessing GPIO required sudo. In between the standard GPIO usages (read write) can be made
accessible without sudo, but more settings or alternate functions may not.
Note: Standard IO without sudo works, when a user is in group gpio.

The pigpio library uses a different approach. It defines a server or daemon which does all initialisa-
tions and has control over all functions of the GPIOs used. This server has to be started with sudo
to run forever in background. Programs doing (process) IO just communicate with the daemon by

 ● socket (as in basic example gnBlinkSimple, listing 2, page 22 and as in all
 our control applications) or by

 ● pipe (never used here).

Both approaches need no sudo. In the case of socket the control program and the GPIO pins may
be on different Raspberries on the same network or one control program can use multiple Pi’s IO.

To tell it the other way round, the pigiod daemon or server can be used remotely or locally by other
programs using the socket or pipe approach. And, not really surprising after all, pigpio forces its
daemon's singleton property. No program or operator can start another instance on the same machine
when the daemon (pigpiod) is running, already.

Even when a pigpio daemon (piGpioD) is forced to be a singleton, nevertheless, one should make
program's usage of pigpiod singleton, too. Additionally, when using only piGpioD one should
exclude all other approaches from sudo-less IO if not yet so. On newer Raspbians this usually
means removing standard users from group gpio by

sudo deluser pius gpio

But now let's go on:
To get and install pigpio (see also [61]) do:

wget https://github.com/joan2937/pigpio/archive/master.zip
unzip master.zip
cd pigpio-master/
sudo make install # make the library see note *)
sudo ldconfig -v # was necessary, now included in make

Then do all the tests provided **) as recommended in [61] by

sudo ./x_pigpio # check C I/F see note **)
sudo pigpiod # start daemon with default sample rate 5 µs etc.
./x_pigpiod_if2 # check C I/F to daemon
./x_pigpio.py # check Python I/F to daemon
./x_pigs # check pigs I/F to daemon (1 fail, Cbs, wavef.)
./x_pipe # check pipe I/F to daemon
cd ~ # ready return to user's directory

Part I I 29 Albrecht Weinert

Note *): If the installation fails on python check its version and install the fitting distutils. If, e.g.,
 python3 --version shows 3.92, do sudo apt install python3.9-distutils

Note **): Put a 1-active LED at pin 22 = GPIO25 to see some test steps working. And see also
 that the tests forget to set pin 22 inactive (by making it an input). The LED stays on.

As said in [61]: If few tests fail and many more are passed; this is OK. We saw some irrelevant test
fails on Pi3s with Jessy, Stretch but with later OS on several Pi types4 (almost) all tests pass.
N.b.: With 10 µs sample rate some test will will fail saying “half the expected number of yxz”.

And when using piGpioD on a Raspberry it's recommendable to start it at boot. Best use:
sudo crontab -e # sudo here(!) but not at program to add; see note
and add one line at the end:

@reboot /usr/local/bin/pigpiod -s 10

Starting pigpiod without parameters uses default settings: 5 µs sample rate, PCM clock 400Hz,
port 8888, both interfaces (socket, pipe) enabled; -s 10 sets 10 µs sampling; -p might change port.
You may test it by rebooting and repeating above tests without prepending sudo pigpiod .

Note: You must put sudo in front of crontab -e when adding or editing a task requiring sudo.
Do not prepend the task command with sudo. The crontab command suggests your editing a single
system configuration file directly. That's an illusion. Every user and sudo seem having own cron editor
settings and files. Getting this (sudo) business wrong is the source of notorious “crontab setting not
working” complaints.

Note also: cron tasks might be started without having your environment and path settings.
Hence, always use the full path to the “real” executable (like /usr/local/bin/pigpiod e.g.).

A last note: When cross-compiling / cross-building it may happen (after first time using a feature)
linker ending with not being able to satisfy externals.
In this case the workstation tool chain may have other / outdated libraries.

23.06.2017 15:15 256.624 libpigpio.so
23.06.2017 15:15 65.128 libpigpiod_if.so
23.06.2017 15:15 75.624 libpigpiod_if2.so

Copy those files from the Raspberry's /usr/local/lib to your workstation's
C:\util\WinRaspi\arm-linux-gnueabihf\sysroot\usr\lib (by ftp).

piGpioD does solve the GPIO sudo hassle. Additionally, Joan N.N.'s pigpio library has a lot of other
rich and useful features, like PWM on every pin, a substitute for digital input interrupts and much
more. By the way: Do not use interrupts!

This library's socket approach with all good points brings one disadvantage:
A (binary) single write to one pin takes 98 µs on slow Pis. Making more than 4 such IO calls in a
1 ms cycle is, hence, a no go. This sounds harder than it is in reality. There are several remedies:

 a) Anyway, a programming style not endlessly repeating the same IO operation, like
turning on a relay already on, is adequate.

 b) Use pigpio's bulk / bank functions whenever feasible.
With one call you can affect a set of I/O registers in one bank. (All IO-pins are in one bank.)

 c) gpiod has output functions which it can perform with 10µs resolution (in our
setting above, 5µs is default) by itself as server/daemon. PWM with individual
frequencies and ratios on every pin being the most modest example.

 d) You may have programmable waveforms, samplings, UART outputs on every pin etc. pp.

You don’t have to use all this, but bear it in mind, when hitting any limit.

The pigpio site (http://abyz.co.uk/rpi/pigpio/pdif2.html) offers no offline .pdf document. The very
good on-line documentation allows being .pdf-printed (60 pages, links partly working).

http://abyz.co.uk/rpi/pigpio/pdif2.html

Raspberry for remote services 30 Albrecht Weinert

PWM and RC servos on every GPIO

Fig. 6: Small servo for remotely/radio controlled (RC) models.

Also without extra interfaces, a Pi can control standard RC servos by connecting an output pin to
the signal input, orange in Fig. 6. These servos are available in a large range of sizes and torques
up to more than 8Nm. They come handy as actors in process control applications.

The supply voltage in the range of 4.8 to 8.4V; in Fig. 6: red= +; and br = - and signal ground. The
control signal is a train of digital CMOS/TTL pulses. The position is determined by the pulse width:

Left: 1.9ms | Center: 1,5 ms | Right: 1.1ms positive pulse: __∏__

The distance of the pulse is not relevant, but 20ms is usual and worked in all cases. Hence, a
50Hz PWM signal 24…14 (for range 256) would do the job. But the pigpio saves us all arithmetic
trouble by giving us fine grained servo control by the function:

int gpioServo(unsigned user_gpio, unsigned pulsewidth)

The parameter pulsewidth is in the range 500…2500 (1500 = middle) or is 0 for “Off”. Note: The off
behaviour depends on the servo type. Most hold the last position, same go to a default position.

Of course, gpioServo() uses the PWM on every GPIO feature.

 PWM on the Pi

Hardware PWM is available on GPIO12, 13, 18 and 19 i.e. pins 32, 33, 12 and 35. To generate a
PWM-signal the following is done, roughly:
 a) choose a frequency / hardware clock (then shared by multiple) GPIOs
 b) set a counter fed by clock a) counting 0…pwmRange-1

Accordingly the frequency of the PWM signal will be clockFreqency/pwmRange.
 c) For a comparator (connected to this counter) set a value

dutyCycle in the range 0…pwmRange

dutyCycle == 0 means always off; dutyCycle == pwmRange means always on; (highest priority)
on counter overflow set output 1; on counter == dutyCycle set output off. Result: the PWM signal.

pigpioD can use this PWM hardware roughly described here on those GPIOs, when appropriate.

But as it is a server/daemon running at it’s sample rate – 1, 2, 4, 5, 8 or 10µs – with hardware clock
accuracy it can implement said PWM clocks, counters and comparators partly or fully by its
software (and as commonly known by now) for every GPIO pin.
pigpioD’s default sample rate is 5µs and we always used 10µs as sufficient in all our applications
so far. The values of the 18 available PWM frequencies depend on the sample rate and the (real)
range depends on the frequency (number); see table.

Part I I 31 Albrecht Weinert

frequNo 1µs 2µs 4µs 5µs 8µs 10µs range

1 40000 20000 10000 8000 5000 4000 25

2 20000 10000 5000 4000 2500 2000 50

3 10000 5000 2500 2000 1250 1000 100

4 5000 4000 2000 1000 1000 800 125

5 4000 2500 1250 800 625 500 200

6 2500 2000 1000 500 500 400 250

7 2000 1250 625 400 313 250 400

8 1600 1000 500 250 250 200 500

9 1000 800 400 200 200 160 625

10 1600 625 313 160 156 125 800

11 800 500 250 125 125 100 1000

12 625 400 200 100 100 80 1250

13 500 250 125 80 63 50 2000

14 400 200 100 50 50 40 2500

14 250 125 63 40 31 25 4000

16 200 100 50 25 25 20 5000

17 100 50 25 20 13 10 10000

18 50 25 13 10 6 5 20000

Table: Available PWM frequencies/Hz by frequency number (first column) and by
sample rate (first line) as well as (real) PWM ranges (last column) by frequency number.

Well, pigpio makes every effort to hide these complications. You just order your signals or servo
position via the pigpio C interface ([62], [62b]). But is is no fault to have a bit of background.

Resume for piGpioD and a look on other GPIO libraries

To quickly resume for piGpioD:

 ● It is our choice – except on a Pi5, see the warning on page 21 – and
 ● service proofed several in real time process IO applications running 24/7 over 6 years
 ● worked on all Pi 0..4
 ● good base for pure Java process IO applications without any extra libs; see [34].

Nevertheless:
Some years ago we considered, installed and tried wiringPi, bcm2835 and a derivative, see [33] if
interested in spite of everything. Download and installation described there still seems to work.

Raspberry for remote services 32 Albrecht Weinert

wiringPi tries to cover the range of Raspberry Pi1, 2 and 3 with its diverse variants as well as
some alternate Pi lookalikes. Additionally wiringPi knows a wide selection of extension boards or
so called “shields” considered then popular by the authors. Well this "serve all" approach is
doomed to fail under other than the assumed "what is all" conditions.

Probably as consequence of this “cover everything” approach wiringPi introduces indirection re-
spectively abstraction layers away from the µP's (BCM2835, BCM2836, BCM2837) GPIO numbers
or (virtualised) IO register addresses ([56]). Wisely, pigpiod does nothing of that sort. This “feature”
(addressing Pin numbers instead of GPIO register numbers) is easily added by some simple Pi
type specific macros, as e.g. include\arch\config_raspberry_04.h (and 00, 03, not 05):

#define PIN37 26 //!< GPIO 26
#define PIN38 20 //!< GPIO 20
#define PIN40 21 //!< GPIO 21
And you can easily add a next abstraction/marco layer to name process signals and put all “wiring”
definitions in one place:
#define LEDgn PIN37 //!< The green LED to blink

Implementing those abstraction layers by marcos does no harm at runtime nor on real time
behaviour, as C handles all macros completely at compile time.

And as pigpiod transparently adds functions as PWM and UART input on every IO pin, you may
think in pins from the hardware IO perspective.

Re-consider our example gnBlinkSimple, listing 2, page 22. With pigpio(d) you may dim the LED
on pin 37 with PWM by just changing the line

gpio_write(thePi, LEDgn, ON);
to

set_PWM_dutycycle(thePi, LEDgn, 128); // 128 = half power, 50% PWM
Nota bene: LEDgn → PIN37 → GPIO 26 is none of Pi’s four outputs with PWM !

The bcm2835 library, as the name suggests, just handles and refers to the µP's GPIO. As the
name does not suggest, it is also usable for BCM2837 and the Pi3 (and others).
Note: Regrettably a lot of bcm2835 documentation stops between 2012 and 2014
with the Pi1, leaving the rest to forums and speculation. Having switched totally to
pigpiod (2017 - 2020), we haven't investigated other libraries further.

Other protocols (also) for process IO

As said: With pigpio(d) we have total control over binary input and output devices like switches,
LEDs optocouplers, power transistors, relays, RC servos and much else.
Other devices we can handle by special protocols (Modbus, MQTT, …) over serial connection
(RS232, RS485, 1wire, …) including also USB and Ethernet.

For Raspberries, the natural way to communicate with companions on the same process control
tier, with servers on higher tiers or with HMI systems is IP via LAN or WLAN (best private).
Note: For micro-controllers, like e.g. most Atmel AVR boards, this is not their “natural” way.

(W)LAN and TCP/IP communication is an integral part of Raspberries and most available OSs,
including Raspbian lite and the like. A whole bunch of protocols, applications and libraries is avail-
able – from start or after a bit of apt-getting. This includes ftp, http, SCP, SSH, Telnet, rlogin and
more.

For process control communication (mostly of IO values and usually time critical) one might be
tempted to write own binary protocols. On base of the GCC socket library (sys/socket.h etc., [63]),
this can be done. Most often it's wiser to use a standard protocol, like Modbus or MQTT.

Part I I 33 Albrecht Weinert

 Modbus

Modbus [65], [66] is an industry standard protocol to communicate process IO data. It is in wide
spread since its origins in 1979 by the PLC manufacturer Modicon (now Schneider). Until today it
is supported by most small automation systems or PLCs. It started as a P2P RS232 link and was
later extended to multi-slave/server by RS485 and also by TCP/IP. Like many beloved program-
ming languages and protocols of such age, Modbus has a bundle of architectural flaws the worst
of which were mistakes known to computer scientists or good programmers already in 1979:

 ▼ Modbus has no layer concept and mixes physics, transport and application in an unfortu-
nate way. The standard makes inadequate references to concrete devices and their addressing
idiosyncrasies. As none of those has any effect to the protocol and its telegrams, these references
to “4xxx registers” and the like are a rich source of confusion. A lot of secondary literature just
dwells on what belongs to the standard and what was meant by "only for a 984A/B/X machine".

 ▼ Modbus has no data type concept worth the name.
One type is "coil" [sic!] = copper wire for relays. This is a boolean forced to one bit. Modbus insists
to transfer thousand of bits (sorry "coils") starting at arbitrary odd bit [sic!] addresses aligned to
bytes – meaning RS232/485 bytes since 1979 and also TCP bytes a bit later. This shifting
nonsense is a burden to implement and test as well as detrimental to runtime performance.
The only other Modbus data type is called "register" which is just a16 bit something. (Above trans-
port Modbus knows no "byte"). Even when the application "thinks" in bytes, this “register” approach
brings the full computational load and risk of errors by endianness handling – without doing any
good for applications' or devices' 32 or 64 bit data.

For the serial interfaces RS232/485 – still in wide use for small controllers – Modbus RTU won't
use UART parity supplemented by a simple checksum. The standard requires a complex CRC tele-
gram checksum. This overkill is, again, overcharging some controllers even with a clever double
look-up algorithm, requiring low baud-rates just to reduce the telegram and CRC load. Serial Mod-
bus has no control flow concept, but a set of pause and time-out requirements forcing modern buf-
fered UARTs to low gear and requiring extra programming. Some newer Modbus implementations
ignore these requirements by implementing "full speed" – the better ones at least documenting or
advertising it. But beware: Other stations might just fail or intentionally reject to communicate with
such non-conformer – and, alas, quite rightly so.

One last point: Modbus by itself has no security measures. This can and must be handled by using
protected networks, only. Serial RS232/485 lines should always fall in that category (by physics).
For TCP/IP Modbus use protected private LANs (or tunnels). On the other hand:

If devices have TCP/IP do use other communication protocols if you can influence it.

Resume: It is a widespread industry standard and we should master Modbus RTU and TCP on our
Raspberry servers.

Serial (RTU) Modbus mostly via has to be used when devices of high quality lack other communi-
cation means. The most prominent example are good industry quality one and three phase smart
meters, like Eastron SDM630 to name just one. Besides an unsigned “impulses per kWh” output
they communicate by RS485 Modbus (as slave) only. Some allow up to 38,4 Kbaud but we saw
seldom stable communication above 9,6 KBaud (the default) on a RS485 bus.

As some solar inverters want to have such smart house meter in some modes, many inverters do
have RS485 or RS232 modbus. – sometimes as their only communication interface. Some allow
other modes than being the sole master over the houses smart meter (Growatt nm00-S e.g.) and
are thus possible clients for our Pis.

Raspberries need extra hardware (like MAX485/232 modules, cf. Figure 11, page 58) to have
RS485 or 232. On the other hand there are many process IO devices around with good value for
money featuring a Modbus interface, like said smart meters and inverters. Linking those to a
Raspberry opens a rich field of applications with professional process IO. So let's have serial
“Modbus RTU” in our portfolio. For the serial hardware and the handling of Pi’s serial interface
(Pins 8 & 10) see the chapter “serial communication hardware” (and software hints, page 56).

Raspberry for remote services 34 Albrecht Weinert

 libmodbus

Implementing a minimal Modbus subset (class 0, TCP IP e.g.) is relatively easy. Going to higher
classes or other interfaces will get hard work. But even with small subsets it is re-inventing the
wheel, considering age and wide use of the protocol. But looking for a reliable and conforming
Modbus library for Raspberry (Linux) was harder than expected.

In the end we used Stéphane Raimbault's libmodbus. It is
 + function code complete
 + including even exotic function codes 17/11, which is
 ▼ implemented in a useless way reporting fixed constants and always “PLC run”
 + available and tested on many platforms
 + in wide spread use. It has
 + implemented all interfaces, TCP/IP and serial (RTU),
 + using an (▼ inconsistent) abstraction layer concept for the interfaces. So the application

software would be less affected should one ever switch from RTU to TCP or back.

 ▼ The library is a “heavy malloc user”, which should be avoided with real time and
 process control. (In fact, we never observed timing faults caused by the library.)
 A remedy would be extracting a simple RTU only and a TCP only subset from the
 library. But that’s harder than expected and without real troubles not worth the while.

 ▼ The well and comfortable working modbus_receive() modbus_reply() server function pair
offers no (call back) interface to handle output just put and input just requested.
Time permitting you'd have to bring all possible input before and get all possible
output after receive().

 ▼ The linked multi-stage (C) pointing leads to horrible readability (impeding an
 easy making of subsets).

 ▼ There is no real documentation of the library's functions, the data structures,
nor on semantics and architectural ideas.

 ▼ Besides some typos there are a few bugs inhibiting cross-compilation and Eclipse
(F3) look-up. One Eclipse / compiler troubling example: In

static int response_exception(modbus_t *ctx, sft_t *sft,
 int exception_code, uint8_t *rsp, const char * template, ...)

the name “template” is considered as keyword misuse by some tools – rename it “tempel”, e.g.

On the other hand, this little list may sound much worse than it is meant. Monsieur Raimbault's
library just works – and quite well so. To resume: With libmodbus we do have the complete sources
of an excellent library to work with – and (not so easy) to learn from.

 Installation

Do the usual update/upgrade exercise. The installation needs git-core; if not installed yet do:
sudo apt-get install git-core
Then do:
sudo apt-get install -y autoconf libtool
git clone https://github.com/stephane/libmodbus/
cd libmodbus/
dir

./autogen.sh ## *)

./configure --prefix=/usr/local

libmodbus 3.1.11
::::::::: *)

Part I I 35 Albrecht Weinert

sudo make install
dir /usr/local/lib
cd src/
dir
dir .libs/ ## here are the .so files
dir .deps/ ## what the hell are .Plo files?

cd ~/libmodbus/tests/
./unit-test-server & ## best note the process number **)
./unit-test-client
Note *): All installation scripts take considerable time and produce lots of output, be patient.

Note **): Normally a test-server started in background would end, when the test-client
disconnects. If this fails do

killall lt-unit-test-server ## Yes, the process' name differs

Due to a bug in the test-servers they work only with clients on the same machine; change the
source accordingly and re-build.

A note on "just do this!" to install libmodbus

Well, due to lacking any respectable background documentation on libmodbus, this "just do!"
was our biggest mental hurdle at first encounter a lot of years ago.

To begin with, why should I use libmodbus at all?
Because it's good and, when not fitting, adaptable.

What does the above installation – many, many pages of scripts! – do with my system?
Gives you some 7 files needed.

What is the – never before used – libtool and why would I need it?
To understand get [64] and read it. You would not need it.
It’s just a help for the project owner to serve many targets.

So the short answer to "Should I do this complicated installation?" is: When wanting libmodbus,
"Yes, do it". Be courageous or make a backup before.

In the end you need the following files – and transferring those from your installation Raspberry to
another one does the installation job:

 ● the sources of the library and the tests if you like

 ● the include files. Put the includes to /usr/local/include/ ***)

-rw-r--r-- 1 root staff 11155 2017-08-04 14:34 modbus.h
-rw-r--r-- 1 root staff 2124 2017-08-04 14:34 modbus-version.h
-rw-r--r-- 1 root staff 1199 2017-08-04 14:34 modbus-rtu.h
-rw-r--r-- 1 root staff 1373 2017-08-04 14:34 modbus-tcp.h
-rw-r--r-- 1 root staff 3430 2017-08-04 14:34 modbus-private.h
-rw-r--r-- 1 root staff 7690 2017-08-08 09:20 config.h
-rw-r--r-- 1 root staff 1627 2017-08-04 14:34 modbus-rtu-private.h
-rw-r--r-- 1 root staff 1247 2017-08-04 14:34 modbus-tcp-private.h

 ● the library files. Put them (all 6) to /usr/local/lib/

lrwxrwxrwx root staff 2017-07-21 libmodbus.so -> libmodbus.so.5.1.0
lrwxrwxrwx root staff 2017-07-21 libmodbus.so.5 -> libmodbus.so.5.1.0
-rwxr-xr-x root staff 123408 2017-07-21 14:32 libmodbus.so.5.1.0

***) Version .10 has another set of include files in /usr/local/include/modbus/
 config.h may be in ~/libmodbus/ instead of ~/libmodbus/src/ .

Raspberry for remote services 36 Albrecht Weinert

-rw-r--r-- 1 root root 12960 2024-10-19 13:19 modbus.h
-rw-r--r-- 1 root root 1195 2024-10-19 13:19 modbus-rtu.h
-rw-r--r-- 1 root root 1360 2024-10-19 13:19 modbus-tcp.h
-rw-r--r-- 1 root root 2205 2024-10-19 13:19 modbus-version.h

Do not forget to say sudo ldconfig afterwards. Otherwise you might get incomprehensible
errors when running (cross-build) Modbus applications on that machine or when linking there.

Just to run a cross-build Modbus program on another Raspberry an unlinked libmodbus.so
ftp-transferred there should suffice after copying it to /usr/local/lib/:
sudo cp libmodbus.so /usr/local/lib/ ## to where it belongs
sudo ln -s /usr/local/lib/libmodbus.so /usr/local/lib/libmodbus.so.5
sudo ldconfig ## what ever it does, never forget

But it turned out that for what ever reasons programs required libmodbus.so.5 even when
made with -lmodbus.

Cross compile and build – 32 bit

After a successful installation or transfer one can locally compile:

cd ~/ibmodbus/src/tests ## or where ever the .c source is
gcc modApp.c -o version -lmodbus
./modApp

To be able to cross-compile, cross-make and cross-build from our (Windows) workstation – and to
use Eclipse there – we have to get the include files to

C:\util\WinRaspi\arm-linux-gnueabihf\sysroot\usr\include

22.07.2017 11:22 1.199 modbus-rtu.h
22.07.2017 11:22 1.373 modbus-tcp.h
22.07.2017 11:22 2.114 modbus-version.h
22.07.2017 11:22 10.912 modbus.h

One may also take

22.07.2017 21:37 3.405 modbus-private.h
22.07.2017 22:04 5.829 config.h
22.07.2017 11:22 1.627 modbus-rtu-private.h
22.07.2017 11:22 1.247 modbus-tcp-private.h

Those more “private” .h files would be needed to (re-) build the library itself and when digging a bit
deeper like building and using their data structures. It is no fault to take them from start.

And we need the get the ("un-linked") file libmodbus.so (~120kB)
and put it to C:\util\WinRaspi\arm-linux-gnueabihf\sysroot\usr\lib

Cross compile and build for different target OS

When cross-building on a PC – almost always Windows in our case – for different target machines
with 32 and 64 bit PiOS respectively Raspbian we have to have separate tool chains with different
compilers, linkers as well library (.so) and most often include (.h) files. The two toolchains we have
on Windows at

C:\util\WinRaspi\arm-linux-gnueabihf\ for 32Bit Pi OS/Raspbian or at
C:\util\winRaspi64\aarch64-linux-gnu\ for 32Bit Pi OS/Raspbian.

Part I I 37 Albrecht Weinert

The tools are in the respective subdirectory bin\ and are additionally distinguished by a prefix, e.g.
 arm-linux-gnueabihf-gcc.exe and aarch64-linux-gnu-gcc.exe
for the C compiler. Hence we can put both subdirectories bin/ on the Windows PATH. Our makefile
has a variable whit it prepends to the tools needed, excerpt:

TOOLPREFIX ?=arm-linux-gnueabihf-
CC = $(TOOLPREFIX)gcc

Obviously, TOOLPREFIX is set to 32 bit by default, but can set otherwise in a target specific (make)
include file, as the operating system is a property of the target machine.

Cross compile and build – 64 bit

Having (and choosing) the tools is perfectly solved by PATH and prefix.

Having the include (.h) and library (.so) files a the right places is perfectly solved for pigpiod. The
Windows cross toolchains have those files for pigpio (and wiringpi) at the right places. And the
installation of pigpiod does the same on the target Raspberry Pi.

Alas, libmodbus has and does neither.

You have to copy all necessary .h files, .so files and .so links to the right places. Do not let the copy
command make file copies from .so links! “Right places” in our case were:

C:\util\winRaspi64\aarch64-linux-gnu\sysroot\usr\include
C:\util\winRaspi64\aarch64-linux-gnu\sysroot\usr\lib

C:\util\WinRaspi\arm-linux-gnueabihf\sysroot\usr\include
C:\util\winRaspi\arm-linux-gnueabihf\sysroot\usr\lib

/usr/local/lib/

Hint: Preserve the links on the Pi when copying by
sudo cp -P /usr/local/lib/libmod* /usr/lib/

Raspberry for remote services 38 Albrecht Weinert

 MQTT

MQTT ([67]) is a TCP based lightweight M2M messaging protocol claiming to be simple, low net-
work bandwidth and small code footprint. Notwithstanding those claims, at least the "simplicity"
might be slightly doubted.

MQTT is quite successful and widely used in the world of IoT and home automation. Most sources
and the protocol are open. The protocol specification is managed by OASIS. To use it, one has to
have at least one broker service running on a machine reachable by all clients via TCP/IP. This
machine may very well be a Raspberry Pi doing other process control work.

A client program producing events might publish those to the broker. The event message must be
assigned to a "topic". Topics are to be organised hierarchically in a tree, e.g.

 labExp/sweetHome/meters/alarms
 labExp/sweetHome/hmi/actuators

The publisher might chose several service quality levels from "once or lost", "at least once or
duplicated" to "just once" when delivering a message to the broker.

The broker would run by default with no security or encryption. It might be configured with an own
user/password base for access to ports and topics, for requiring client certificates and for using
TLS. Before jumping to those features in a closed, secured (W)LAN, one should consider these
requirements hitting all clients at the site. Think twice before burdening our small Raspberry and
ESPxy devices with complicated protocol extensions. But beware: This "have no fear" only holds
until we open our private process control LAN to someone else.

A client program wanting to react respectively listen to events has to subscribe to one or more
topics. Besides specific topics, like the two examples above, single level (+) and multi-level (#, at
the end, only) wildcards can be used:

 labExp/sweetHome/+/alarms
 labExp/sweetHome/hmi/#
In a certain sense, we have the Listener respectively Observer pattern implemented by the MQTT
broker to which clients (programs) can publish or subscribe. A client program may very well have
both the publisher and the subscriber role.

A client may publish one special "last will" or "testament" (LWT) message. This message will be
stored by the broker and pushed to subscribers, only, after this client failed or died. Criteria for
death are network and MQTT protocol errors and time outs.

MQTT products

There are a lot of MQTT enabled products with good price performance ratio on the market:

 ● ESP8266 WiFi modules with MQTT
 ● single to quadruple power (relay) switches, optionally

 ● 230V AC or ● 24V
 ● DIN rail mounted ● wall plug-in

 ● touch wall switches
 ● lamps / bulbs and a lot more.

As did Modbus with smart meters, pumps etc., MQTT opens another range of products as sensors
and actuators for our process control Raspberries.

Part I I 39 Albrecht Weinert

 MOSQUITTO

A Raspberry Pi 3 doing a 24/7 process control task in >= 20 ms cycles may very well execute
some extra services, like an Apache 2.4 server for HMI (see page 14) and a MQTT broker, when
used judiciously and almost only related to the process control task.

Mosquitto is an open source implementation of a MQTT broker etc. by Eclipse. It seems to be the
most used implementation for small and embedded systems, notwithstanding the lack of findable
respectively usable documentation and manuals.

To install Mosquitto do:

sudo apt-get update && sudo apt-get upgrade
sudo apt-get install mosquitto
sudo service --status-all | grep mosq

The installation command brings the broker and starts it as service. The broker service can be
switched off and on by:

sudo service mosquitto stop
sudo service mosquitto start

If we want the broker alone (on an extra Raspberry, e.g.) we would stop here. For having the client
(test) program, the library and the include file we do:

sudo apt-get install mosquitto-clients
sudo apt-get install libmosquitto-dev
sudo ldconfig

To test our new broker we utilise the command-line clients, just installed:

mosquitto_sub -d -t labExp/sweetHome/#

-t precedes the topic(s) we subscribe to, and -d brings some extra (debug) messages, helping
to get acquainted with the protocol. To see the broker and our (one) running subscriber working we
publish a fitting message by command-line, best in another putty console:

mosquitto_pub -d -t labExp/sweetHome/alarm -m "bathtub overflow 3"

If all went well, our subscriber sees the event, immediately. When sending an off topic message

mosquitto_pub -d -t hello/world -m "Hello 11"

nothing should happen.
Note: Besides mosquitto_pub and mosquitto_sub, there's a third command-line tool mosquitto_passwd.

 libmosquitto

By some searching and “greping” (due to lack of documentation) one can see, we have just one
library and one include file:

lrwxrwxrwx root root 17 2017-05-29 07:21 libmosquitto.so
-> libmosquitto.so.1

-rw-r--r-- root root 46960 2017-05-30 00:32 libmosquitto.so.1
-rw-r--r-- root root 54155 2017-05-29 07:21 /usr/include/mosquitto.h

in /usr/lib/ and /usr/include/ (32bit, above) respectively ./usr/lib/aarch64-linux-gnu/ (64bit):

lrwxrwxrwx root root 17 2023-09-30 19:28 libmosquitto.so
 -> libmosquitto.so.1
lrwxrwxrwx root root 22 2023-09-30 19:28 libmosquitto.so.1

 -> libmosquitto.so.2.0.11
-rw-r--r-- root root 132K 2023-09-30 19:28 libmosquitto.so.2.0.11
-rw-r--r-- root root 123K 2021-06-09 19:28 /usr/include/mosquitto.h

Raspberry for remote services 40 Albrecht Weinert

Compile and cross-build

To cross-compile and -build on the workstation we put the include file to
C:\util\WinRaspi\arm-linux-gnueabihf\sysroot\usr\include

(32 bit) respectively (64 bit)
C:\util\WinRaspi64\aarch64-linux-gnu\sysroot\usr\include

and the library both as libmosquitto.so.1 as well as as "un-linked" (copied) libmosquitto.so to

C:\util\WinRaspi\arm-linux-gnueabihf\sysroot\usr\lib

That's it. As first test we make a simple publisher example (with accompanying make include) in
Eclipse and having the make tool build it and ftp it to the target Raspberry, as usual. With this proof
of feasibility – and when having understood the API ([69]) – we can add MQTT functions (public
and/or subscribe) to our C process control software. And we can make own small (ESP8266
based, e.g.) MQTT devices.

Similar cross tooling problems occur when libraries are in folder where the cross compiler linker
wouldn’t look. For example files libpthread.* where in
 C:\util\winRaspi64\aarch64-linux-gnu\sysroot\usr\lib\aarch64-linux-gnu\
instead of C:\util\winRaspi64\aarch64-linux-gnu\sysroot\usr\lib\ .

 cd C:\util\winRaspi64\aarch64-linux-gnu\sysroot\usr\lib\
 copy .\aarch64-linux-gnu\libpthrea* .\
solved the problem.

Part II's results

Since Part I we can install a usable OS and tools on Raspberries. Having provided all basic tools
and having set up communication we can administer Pis with some comfort remotely from both
Ubuntu and Windows. And we can save and restore the current state of our ”little servers”,
sometimes a bit spoiled by the “size problem”.

Now we just added libraries to control process I/0 of many sorts in real time.
Experiences and measurements show: Comparing Raspbian lite=GUI-less with with the GUI
variant we see with the GUI variant

 ▼ 39+ more services/processes running immediately after reboot

 ▼ 2..5 s delay when typing on putty after a short pause.
On a GUI-less/lite we always saw an immediate reaction as we type.

And when it comes to even modest real time requirements with PLC like cyclic 1 ms tasks
(threads) we experience no problems with Pi3 and OS lite, while the GUI variant reproducibly
always and totally fails in latencies and many other aspects:

 ▼ The GUI variant showed just slightly worse latency results (sometimes
max. latency above 200µs compared to always below 200µs on lite).

This seems not so bad for the non lite graphical OS. But:

 ▲ Loads (ping etc.) have no measurable effect on the lite Pi OS variants
 ▼ Such loads, on the other hand, significantly increase he latency on the GUI variant.

And the latency literally “explodes” by just moving the mouse.

Hence we must state: A standard PC like GUI is making the Raspberry unsuitable for any embed-
ded / realtime/ server work. This resembles our experiences in the large with “real” servers ([29]).

Part III 41 Albrecht Weinert

 P A R T III Process Periphery and control

Fig. 7: Raspberry Pi's 40 pin two-row IO connector

Using the GPIOs

Our first goal is to use Raspberry's GPIO pins in an own program, preferably written in C. In any
case, we want our programs cross-compiled (cross-made, cross-build) from comfortable work-
stations. For a minimal proof of concept we had the example gnBlinkSimple in Part I, see listing 2,
page 22. If skipped, do it now!

A Pi 1 Model A, see figure 8, would also be sufficient for those experiments, but it has no Pin 37.
The equivalent of figure 7 would end at Pin26.

Fig. 8 :Minimal I/O

As hinted above, we handle the IO differences between the Pi types in include files. For a Pi1
(fig. 8) it would be include/arch/config_raspberry_01.h (Listing 4, page 42), and for Pi 0, 3 and 4
include/arch/config_raspberry_00.h, .._03.h etc.; (shortened listing 5, page 43.

Raspberry for remote services 42 Albrecht Weinert

** @file config_raspberry_01.h (Listing 4)

 * Configuration settings for Raspberry Pi1 (Models A)

 * This file contains some platform (type) specific definitions. These
 * settings influence the compilation and build process. Most of those
 * settings can not be changed later at runtime.
 * Since end 2017 we mostly use Pi3 ++; see config_raspberry_03.h.
\code
 Copyright (c) 2019 Albrecht Weinert
 weinert-automation.de a-weinert.de

 * / / /\

 * / /___ / \ |

 * \ /____\ /____\ | _|__

 * \ /\ / \ / \| |

 * \/ \/ __/ __/|_ \endcode

 Revision history \code

 Rev. $Revision: 271 $ $Date: 2024-11-15 19:32:54 +0100 (So, 29 Okt 2023) $
 Rev. 209 10.07.2019 : stdUARTpath
 Rev. 231 13.08.2020 : two digit PIN0x and GPIO2pin added
\endcode */

#ifndef CONFIG_PLATFORM_H
define CONFIG_PLATFORM_H raspberry_01
#else

error "more than one platform specific config_platform.h file"
#endif

// by using Joan NN's pigpio(d) we don't need those address values

//#define ARM_PERI_BASE 0x20000000

//#define ARM_GPIO_BASE 0x20000000

//#define ARM_PERI_SIZE 0x01000000

// 26 pin con |GPIO number
#define PIN03 0 //!< SDA0 (GPIO 02 on other Pis)
#define PIN05 1 //!< SCL0 (GPIO 03 on other Pis)
#define PIN07 4
#define PIN08 14 //TXDI
#define PIN10 15 //RXDI
#define PIN11 17
#define PIN12 18
#define PIN13 21 //!< GPIO 21 (GPIO 27 on other Pis)
#define PIN15 22
#define PIN16 23
#define PIN18 24
#define PIN19 10 // MOSI | S
#define PIN21 9 // MISO | P
#define PIN22 25
#define PIN23 11 // SCLK | I
#define PIN24 8 // CE0 /
#define PIN26 7 // CE1 /

Part III 43 Albrecht Weinert

// 6 9 14 20 25 : gnd
// 1 17 : 3.3V
// 2 4 : 5V

/** GPIO [0..39] to pin number (1..40) lookup list.
 *
 * 0 means has no pin on the 40 pin connector; see also ::gpio2pin
 */
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,

#define GPIO2pin 3, 5, 0, 0, 7, 0, 0, 0,24,21,19,23, 0, 0, 8,10, 0,11,12, 0,\

 0,13,15,16,18,22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

/** Pin number [0..26] to GPIO number lookup list.
 *
 * 0..56: GPIO number; 95: 5V pin; 93: 3.3V; 90: Ground 0V;

 * 99 means not existent. N.b.: [1..26] are: valid pin numbers, only.
 * @see ::pin2gpio
 */
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,

#define PIN2gpio 99,93,95, 0,95, 1,90, 4,14,90,15,17,18,21,90,22,23,93,24,10,\
 90, 9,25,11, 8,90, 7,99,99,99,99,99,99,99,99,99,99,99,99,99,\

 99,99,99,99

// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,

// 0..56(?) GPIO; 95: 5V; 93: 3.3V; 90: Ground 0V;
// 99: not existent; [1..40]: valid pin number/index; [1..26]: existing
pins

/** /def stdUARTpath
 * Pi's standard UART.

 * It is the one on the Pins 8 (GPIO14) for Tx and 10 (GPIO15) for Rx.
 */

#define stdUARTpath "/dev/ttyS0"

Listing 4: include file config_raspberry_01.h

** @files config_raspberry_03.h config_raspberry_04.h (Listing 5)
* Differences to config_raspberry_01.h (Listing 4 page 42)
 :::::::::::::::::::::

// 40 pin con|GPIO number
#define PIN03 2 //!< GPIO 02 SDA1 (GPIO 0 on Pi1)
#define PIN05 3 //!< GPIO 03 SCL (GPIO 1 on Pi1)
#define PIN07 4 //!< GPIO 04 GPCLK0
#define PIN08 14 //!< GPIO 14 TXDI
#define PIN10 15 //!< GPIO 15 RXDI
#define PIN11 17 //!< GPIO 17
#define PIN12 18 //!< GPIO 18
#define PIN13 27 //!< GPIO 27 (GPIO 21 on Pi1)
#define PIN15 22 //!< GPIO 22
#define PIN16 23 //!< GPIO 23
#define PIN18 24 //!< GPIO 14

Raspberry for remote services 44 Albrecht Weinert

#define PIN19 10 //!< GPIO 10 SPI.MOSI | S
#define PIN21 9 //!< GPIO 09 MSPI.ISO | P
#define PIN22 25 //!< GPIO 25
#define PIN23 11 //!< GPIO 11 SPI.SCLK | I
#define PIN24 8 //!< GPIO 08 SPI.CE0 / .
#define PIN26 7 //!< GPIO 07 SPI.CE1 / .
#define PIN27 0 //!< SDA0
#define PIN28 1 //!< SCL0
#define PIN29 5 //!< GPIO 05
#define PIN31 6 //!< GPIO 06
#define PIN32 12 //!< GPIO 12
#define PIN33 13 //!< GPIO 13
#define PIN35 19 //!< GPIO 19
#define PIN36 16 //!< GPIO 16
#define PIN37 26 //!< GPIO 26
#define PIN38 20 //!< GPIO 20
#define PIN40 21 //!< GPIO 21

// 6 9 14 20 25 30 34 39 : gnd
// 1 17 : 3.3V
// 2 4 : 5V
// 27 28: ID_SD/SC (HAT board & EEPROM interface) or GPIO 0 and 1

/** GPIO [0..39] to pin number (1..40) lookup list.

 * 0 means has no pin on the 40 pin connector; see also ::gpio2pin
 */
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,

#define GPIO2pin 27,28, 3, 5, 7,29,31,26,24,21,19,23,32,33, 8,10,36,11,12,35,\

 38,40,15,16,18,22,37,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

/** Pin number [0..43] to GPIO number lookup list.

 * 0..56: GPIO number; 95: 5V pin; 93: 3.3V; 90: Ground 0V;

 * 99 means not existent. N.b.: [1..40] are: valid pin numbers, only.
 * @see ::pin2gpio
 */
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,

#define PIN2gpio 99,93,95, 2,95, 3,90, 4,14,90,15,17,18,27,90,22,23,93,24,10,\

 90, 9,25,11, 8,90, 7, 0, 1, 5,90, 6,12,13,90,19,16,26,20,90,\

 21,99,99,99

// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,

// 0..56(?) GPIO; 95: 5V; 93: 3.3V; 90: Ground 0V;
// 99: not existent; [1..40]: valid pin number/index

Listing 5: include files config_raspberry_03.h, 04h; Differences to config_raspberry_01.h, only

Hint: With some #define magic (in arch/arch/config.h) those include files can be selected
by a variable PLATFORM in the make process. To get that useful “gimmick” and more, check out
the project. Without those you’ll have to control the make process by hand and make the sources
less common by hard coding some definitions.

A look at rdGnBlink.c (listing 6, page 45) will make these point clear.

Part III 45 Albrecht Weinert

/** @file rdGnBlink.c (Listing 6)

A second program for Raspberry's GPIO pins
 Copyright (c) 2024 Albrecht Weinert
 weinert-automation.de a-weinert.de

 This is a simple GPIO pin output program using pigpio(d), still.But it has
 features qualifying it as a process control service. It locks gpio, it can
 run endlessly and it cleans up when ended. Hence it may be the germ cell
 of (simple) real time control applications.

 Compile on Pi by: gcc rdGnBlink.c -o rdGnBlink -lpigpiod_if2

 Compile on Windows by:\code
 arm-linux-gnueabihf-gcc -DF_CPU=1200000000 -DPLATFORM=raspberry_03 -DMCU=BCM2837
 -DTARGET=Pi4all -I./include -c -o rdGnBlink.o rdGnBlink.c

 arm-linux-gnueabihf-gcc -DF_CPU=1200000000 -DPLATFORM=raspberry_03 -DMCU=BCM2837
 -DTARGET=Pi4all -I./include -c -o weRasp/weLockWatch.o weRasp/weLockWatch.c

 arm-linux-gnueabihf-gcc -DF_CPU=1200000000 -DPLATFORM=raspberry_03 -DMCU=BCM2837
 -DTARGET=Pi4all -I./include -c -o weRasp/sysBasic.o weRasp/sysBasic.c

 cp rdGnBlink.elf rdGnBlink

 winscp.com /script=progTransWin /parameter sweet:0123 targetPi bin gnBlinkSimple
 \endcode
 or on Windows simply by\code
 make PROGRAM=rdGnBlink TARGET=pi4play clean all
 make PROGRAM=rdGnBlink TARGET=pi4play FTPuser=sweet:0123 progapp \endcode
*/

#include <stdlib.h>
#include <stdio.h>
#include <pigpio.h>
#include <pigpiod_if2.h> // set_pull_up_down set_mode gpio_write
#include <unistd.h>
#include <signal.h> // signal SIGTERM SIGINT
#include "weLockWatch.h"
#include "arch/config.h" // evaluates PLATFORM

#define LEDgn PIN13 // green LED 1 active is attached to Pin 13
#define LEDrd PIN11 // red LED 1-active is Pin 13
#define ON 1 // true On An marche go.
#define OFF 0 // false Off Aus arret stop halt.
#define uMS 1000 // 1ms is 1000 us

int thePi; // the Pi handle for pigpiod

//--------- basic configuration and names -----------------------------
char const prgNamPure[] = "redGnBlink";
// 0123456789x1234567
char const prgSVNrev[] = "$Revision: 271 $ ";
//........ 0123456789x123456789v123456789t123456789q
char const prgSVNdat[] = "$Date: 2024-11-15 10:52:04 +0100 (So, 29 Okt 2023) $";
// 0123456789x123456789v12345

static void onSign(int s){
 if (s == SIGINT) { printf(
 "\n rdGnBlink (%s) is shutting down normally \n", lckPiGpioPth);

Raspberry for remote services 46 Albrecht Weinert

 exit(0); // cntl C terminates normally
 } else { printf(
 "\n rdGnBlink (%s) was terminated, code : %d \n", lckPiGpioPth, s);
 exit(s);
 }
} // onSign(int)

static void onExit(){
 set_mode(thePi, LEDgn, PI_INPUT); // release red LED pin
 set_mode(thePi, LEDrd, PI_INPUT); // green LED pin
 closeLock();
} // onExit(int, void*)

/* Relative delays for the specified number of milliseconds */
void delay(unsigned int millis){

 usleep(500 * uMS);
} // delay(unsigned int)

int main(int argc, char* argv[]){
 printf(
 "\n Blink green and red LEDs on Pins 13 and 11 \n"
 "rdGnBlink.c R.01 15.11.2024 Albrecht Weinert \n\n");
 if (openLock(lckPiGpioPth, ON)) return retCode; // no lock/singleton
 thePi = pigpio_start(NULL, NULL); // connect pigpio daemon(local, 8888)
 if (thePi < 0) { // initialise pigpio daemon failed
 printf("\ncan't initialise IO handling (piGpioD) \n"
 "rdGnBlink.c Error / return code 99 \n\n");
 return 99;
 } // can't initialise piGpioD (the essential gpIO library)

 atexit(onExit); // register exit hook
 signal(SIGTERM, onSign); // signal hook
 signal(SIGABRT, onSign);
 signal(SIGINT, onSign);
 signal(SIGQUIT, onSign);
 set_mode(thePi, LEDgn, PI_OUTPUT);
 set_mode(thePi, LEDrd, PI_OUTPUT);

 while(1) { // red green
 gpio_write(thePi, LEDrd,ON);
 delay(200); // 200 ms red
 gpio_write(thePi, LEDgn, ON);
 delay(100); // 100 ms both
 gpio_write(thePi, LEDrd, OFF);
 delay(100); // 100 ms green
 gpio_write(thePi, LEDgn, OFF);
 delay(200); // 200 ms dark
 } // while endless // loop 600 ms
} // main()

Listing 6: rdGnBlink.c, the second more professional gpio program

Part III 47 Albrecht Weinert

Listing 6 is still is a simple GPIO output program using pigpio(d). Compared to he example
gnBlinkSimple, see listing 2, page 22, the visible difference is its

 a) blinking with two LEDs instead of one.

gnBlinkSimple was self-contained, while rdGnBlink (listing 6, page 45)

 b) uses extra sources, includes and make files.

This is purely technical and makes the sources flexible and re-usable.

Additionally rdGnBlink has

 c) features qualifying it as a process control service.
It locks gpio, it can run endlessly and it cleans up when ended.

The real decisive difference is c). Now it may be time to explain why rdGnBlink.c (listing 6) seems
so long and may look complicated – it's neither. A minimal “hello output” with exactly the same
600 ms loop, two LEDs blinking would be 16 non comment lines easily excerpted from listing 6.

But aiming at real time, real processes and distributed control our requirements are a bit higher.

As the germ cell of of a full grown 24/7 process control / IO application we at least want it to

 ● clean up and leave a specified, controlled output state when finishing or being killed
and

 ● prevent more than one instance of such well behaving *) control program running.

 ● A watchdog is easily added (and should be, see page 66 below).
Note *): “Well behaving” means: All programs using GPIO (i.e. pigdiod daemon) shall get

 a certain lock or die making a daemon user be a “singleton”.

 Note also: Holding lock by itself requires a watchdog.

Comparing listing 2 and 6 shows “process control” part implementing the external behaviour being
essentially the same. The complication by those two/three – minimal by the way – requirements
won’t grow substantially when getting to a full grown process control program.
And we put the required code in extra sources and include files, see Listing 7 below.

Using the simple version (listing 2, page 22), it will easily get evident or demonstrated that running
two instances of the program gnBlinkSimple would spoil the timing behaviour on the process
outputs. These multiple starts happen quite easily, often by implementing automatic starts (boot,
cron, etc.) forgetting one already did so. Additionally well meaning users tend to start control
applications without noticing or checking their state.

The Unix style solution in listing 6 is to use a fixed lock file that has to exist. Before entering any
process control part including its initialisation, it is tried to lock that file. If it can't be locked or if it
does not exist the program terminates. As a welcome side effect we can delete the lock file to
prevent all future starts – those by hand as well as the automatic ones.

/** Excerpt from files weRasp/sysBasic.c, (Listing 7)
 weRasp/weLockWatch.c etc. (.h-files omitted here)

/* Basic start-up function failure. */

int retCode;

/* Common path to a lock file for GpIO use */

char const * const lckPiGpioPth = "/home/sweet/bin/.lockPiGpio";

/* Open and lock the lock file.
 * This is the basic implementation of ::openLock. Applications not
 * wanting its optional logging or doing their own should use this
 * function directly.
 * @param lckPiGpioFil lock file path name
 * @return 0: OK, locked; 97: lckPiGpioFil does not exist;

Raspberry for remote services 48 Albrecht Weinert

 * 98: can't be locked
 */

int justLock(char const * lckPiGpioFil){
 if (! useIOlock) return 0;
 char const * lckPiGpio = lckPiGpioFil != NULL ?
 lckPiGpioFil : lckPiGpioPth;
 if ((lockFd = open(lckPiGpio, O_RDWR, 0666)) < 0) {
 return retCode = 97;
 } // can't open lock file (must exist)
 if (flock(lockFd, LOCK_EX | LOCK_NB) < 0) {
 close (lockFd);
 return retCode = 98;
 } // can't lock lock file
 return retCode = 0;
} // justLock(char const *)

Listing 7: The code for central locking of IO

The gpio lock file is best put in the bin directory of the main process control resp. IO user. In our
example listing 7 it is /home/sweet/bin/.lockPiGpio. Logged in as that user create it as file of
length 0 just once by
touch ~/bin/.lockPiGpio

If this user shall be the only one to such correctly locking process IO programs that was it. If you
want to run alternative programs or test versions as other users in the same group (would be sweet
in our example) do also

chmod g+w ~/bin/.lockPiGpio

In Linux the right to lock a file is the right to write cause of the just three bits for assigning rights. If
other users shall be able to lock that file do

chmod a+w ~/bin/.lockPiGpio

Of course, the lock file must be unlocked when program ends – no matter why or how the
program was terminated or killed. Hence, we best implement a clean up and put the unlock there.
This clean up, we need anyway – so it's no extra complication for the unlock. When controlling
process outputs it is essential to bring them in a specified state when the program ends, no matter
how and why. In listing 6 (find signal() and atExit()) this is done by catching the relevant signals
(interrupts) as well as the program end and putting the clean-up in the registered hooks. In our
case we release (and de-energise) our outputs, which most often is the adequate procedure.

If this is not adequate the design of the process IO attached is wrong. If the outputs ar de-
energised i.e. high impedance state by (our making them inputs) or by turning the (µ) controller of
no actor, relays etc. should come in an active (moving, energised, …) state.

Turning off power or making outputs high impedance must lead to a “safe state” as golden rule.

Having just a “singleton” GPIO user would not mean that another application may not observe the
GPIO states (if well written and behaving).

A small program gpioList.c gives us snapshot of gpio 0..31 for an exemplary controller
running 24/7 on a Pi3 by just typing

sweet@meterPi:~ $ gpioList

The program gpioList won’t change any state of the GPIO registers 0 to 31 as H(igh, 1) or
L(low, 0). It tells the Pin number, if applicable, according to the Pi type. The register contents for
alternative functions, like PWM, are only relevant when such function is actve.

Part III 49 Albrecht Weinert

Pin	GPIO	Mode	freq	duty	range
 27 | 00 H | in | 400 | -92 | 255
 28 | 01 H | in | 400 | -92 | 255
 03 | 02 H | out | 400 | -92 | 255
 05 | 03 H | in | 400 | -92 | 255
 07 | 04 H | in | 400 | -92 | 255
 29 | 05 L | out | 400 | -92 | 255
 31 | 06 H | out | 400 | -92 | 255
 26 | 07 H | out | 400 | -92 | 255
 24 | 08 H | in | 400 | -92 | 255
 21 | 09 L | in | 400 | -92 | 255
 19 | 10 L | in | 400 | -92 | 255
 23 | 11 L | in | 400 | -92 | 255
 32 | 12 L | out | 400 | -92 | 255
 33 | 13 L | out | 1000 | 118 | 1000
 08 | 14 H | alt2 | 400 | -92 | 255
 10 | 15 H | alt2 | 400 | -92 | 255
 36 | 16 L | out | 400 | -92 | 255
 11 | 17 H | out | 400 | -92 | 255
 12 | 18 H | out | 400 | -92 | 255
 35 | 19 H | in | 400 | -92 | 255
 38 | 20 L | out | 400 | -92 | 255
 40 | 21 L | out | 400 | 48 | 255
 15 | 22 H | out | 400 | -92 | 255
 16 | 23 H | out | 400 | -92 | 255
 18 | 24 H | out | 400 | -92 | 255
 22 | 25 H | out | 400 | -92 | 255
 37 | 26 L | out | 400 | -92 | 255
 13 | 27 H | out | 400 | -92 | 255
 | 28 H | alt0 | 400 | -92 | 255
 | 29 L | alt0 | 400 | -92 | 255
 | 30 L | alt5 | 400 | -92 | 255
 | 31 L | alt5 | 400 | -92 | 255
-----|------|------|------|------|------
 Pin | GPIO | Mode | freq | duty | range
 Low/High^ no PWM=-92

gpio 4 (pin 7) is used for 1wire which can’t be seen here; we just see input.

gpio 13 (pin 33) generates the 1kHz (1000 Hz) 50% duty cycle. At this Pi it is a CP (control pilot)
 signal waiting for an electrical car’s request for AC one or three phase loading *).

gpio 14 and 15 (pins 8, 10) are a UART, “alt2”, controlling two smart meters via RS485 Modbus.

gpio 28 ..31 do not end in IO pins. On a compute module they are usable.

All others are are used as inputs or outputs or they are not used here (and listed as “in).

Note *): The loading circuit amplifies this to a ±12V rectangular signal with 1 kOhm impedance.
 The car would load the positive half of the ±12V with a resistor to show its presence,
 . . . and so on in the “analog protocol”. The duty cycle 118 / 255 is not 50%. The -10 here
 compensates the asymmetries introduced here by optocouplers and the analogue circuit.

Raspberry for remote services 50 Albrecht Weinert

An application as service

When using the Raspberry as server – or device – we usually want applications (process control,
web server etc.) start automatically when powering up without a user having to login.

 rc.local

One way is putting the starting command at the end of /etc/rc.local.
For rdGnBlink.c, listing 6, page 45, put there:

/home/sweet/bin/rdGnBlink &

Our small program will be started at the end of the boot process. Do not forget the & at the end. It
puts the thing in the background goes on with the script.

To stop a program started this way, best determine the process ID number and kill it:

ps aux | grep rdGnBlink
sudo kill TheProcessNumberProvided

The process ID number is the second word in each line given by ps aux, hence lookup by:

ps aux | grep rdGnBlink | awk '{print $2}'

If valiant enough replace the number lookup by direct kill using this:

ps aux | grep rdGnBlink | awk '{print $2}' | xargs kill

or (if available) a "mass murderer" command

sudo killall rdGnBlink # also works on most Pi OSs

The last one -- killall -- the most simple one and is preferable if used by hand. For a well
behaving process control program forcing itself being the singleton handler of IO there is no danger
of mass murdering. The other complicated are used / found in listing 8, page 51.

 cron

The cron service knows an event “@reboot”. Add an @reboot line by

crontab -e

@reboot /home/sweet/bin/rdGnBlink

This works without & at the end at the cost of an extra shell process.

ps aux | grep rdGnBlink

reveals the extra (avoidable) shell process process, the can be killed.

pi 526 1912 388 ? 16:53 0:00 /bin/sh -c /home/sweet/bin/rdGnBlink
pi 528 4008 1696 ? 16:53 0:00 /home/sweet/bin/rdGnBlink
pi 818 4776 1916 S+ 17:16 0:00 grep --color=auto rdGnBlink

As more complicated programs require other services (gpiod e.g.), DHCP settled etc. one would
like to start them a certain time (35 s in example) after reboot:

@reboot sleep 35 && /home/sweet/bin/hometersControl &

The cron service is probably running by default, but logging may not always be enabled. If some-
thing is doubtful or wrong when using cron, the first look would go to its log file, /var/log/cron.log by
default. You might wish to enable cron logging by:

sudo nano /etc/rsyslog.conf

and put in or uncomment this line (found under # rules #):

cron.* /var/log/cron.log

Part III 51 Albrecht Weinert

In our above example cron would log e.g.

May 26 08:53:49 rasp67 CRON[499]: pi CMD (/home/sweet/bin/rdGnBlink)

It shows our program's start time and command, but only the shell's pId.

 Mimic a service – start stop restart enable disable

With a bash script (listing 51 below) rdGnBlinkCntl we control our exemplary “process control”
program (listing 6: rdGnBlink.c, page 45). Make the script by

cd ~/bin & touch rdGnBlinkCntl
chmod 755 rdGnBlinkCntl

and work on it via FileZilla and editpad.exe to have this:

##!/bin/bash listing 8

showRdGnBlinkCntlVers () { echo "
/usr/local/bin/rdGnBlinkCntl resp. ~/bin/rdGnBlinkCntl
control the rdGnBlink service V.59 30.11.2024
(c) 2017 Albrecht Weinert weinert-automation.de
"; }

rdGnBlinkCntlHelp () { echo "
call by: rdGnBlinkCntl command
commands are:
start | stop: start or stop rdGnBlink
restart: stop and then start
version: show version info
"; }
if ["X--help" == "X$1" -o "X" == "X$1"]; then
 showRdGnBlinkCntlVers ; rdGnBlinkCntlHelp ; exit 0
fi
if ["--version" == "$1" -o "version" == "$1"]; then
 showRdGnBlinkCntlVers ; exit 0
fi
progPath=/home/sweet/bin/rdGnBlink
searchPt=rdGnBlink
stop() {
 ps aux | grep -m 1 ${searchPt} | awk '{print $2}' | xargs -t kill
}
start() {
 ${progPath} &
 pid=$!
 sleep .3
 if ps -p $pid > /dev/null; then
 echo "rdGnBlink started with PId ${pid}"
 exit 0
 fi
 exit 99
}
if ["start" == "$1"]; then start; fi
if ["stop" == "$1"]; then stop; exit 0; fi

Raspberry for remote services 52 Albrecht Weinert

if ["restart" == "$1"]; then stop; sleep 2;
 start
fi
rdGnBlinkCntlHelp

Listing 8: Script rdGnBlinkCntl to control rdGnBlink (listing6) as service.

 Making a library

Having common utility functions, variables and values in extra .c and .h files, let's see how to make
a library from them, when not wanting to link them to every executable in question.

In a key matrix example ([33]) once we had three sources

 ● keysPiGpioTest.c main program
 ● weRasp/sysUtil.c, include/sysUtil.h utilities and cyclic task execution support
 ● weRasp/weGPIOd.c. include/weGPIOd.h IO support for using the gpio library

The usual (and no bad) way is to translate all three .c files to .o files best organised in the makefile
and link all three .o files to the executable keysPiGpioTest.

With this simple procedure (just translate all) you may
 ● change every source before cross-build. The good point is
 ● get one monolithic (mid-sized) executable you may transfer to and
 ● run on every Pi where a pigpiod is installed and the daemon is is running
without having to transfer your private library

On the other hand you may be tempted to make one (or more) of the utilities a library – in our
exemplary case sysUtil.c. Doing so you may
 ● separate stable utility and runtime code from the more volatile application sources
 ● keep the source code away from the application programmers.

Then you translate one source less and link the extra library with the -lsysUtil option. The library
libsysUtil has to be present on the cross-build workstation as well as on every Pi where an
application linked against it must run. To make the library on the workstation do:

arm-linux-gnueabihf-gcc -Wall -DMCU=BCM2837 -I./include -shared
-o weRasp/libSysUtil.so -fPIC weRasp/sysUtil.c

copy weRasp\libSysUtil.so C:\util\WinRaspi\
arm-linux-gnueabihf\sysroot\usr\lib\

Transfer the library libSysUtil.so to the Raspberry to a directory remotely (ftp) accessible.
There do:

sudo cp libsysUtil.so /usr/local/lib/
sudo chmod +x /usr/local/lib/libSysUtil.so
sudo ldconfig

This topic is put here just for completeness. As long as the cross make / cross build chain works
we see no real advantage in building libraries and to have keeping track of their versions.
Well, if you want give a customer functionality without the sources this is one way.

Process IO hardware

In our introductory examples (rdGnBlink, listing6, page 45) the process IO is directly connected to
the IO pins of Raspberry's µP. This might be feasible to a certain extend when all sensors and
actuators are nearby in a closed encasement. Figure 9 shows a professional key matrix, LEDs and
a piezo beeper as one suitable example for directly attached process IO. The break-out board is
just a test harness and helps to connect a logic analyser – it is the black box with the green LED on
the left of Figure 9.

Part III 53 Albrecht Weinert

In the production version the Pi is fixed to the back of the key matrix. When WLAN is sufficient, we
now use a Pi Zero in that place.

In all other cases and when controlling power beyond 48 mW, or distant actuators and sensors,
interface and protecting circuitry is mandatory. Many offers are found, often under the genus
“shield”. But beware of useless or outright dangerous devices.

Fig. 9: Direct attached IO

 LEDs and buttons – direct IO

As soon as process IO signals go beyond the borders of a Raspberry, protective circuitry is man-
datory. Low power LEDs, piezo speakers and buttons within the same protective encasement are
an acceptable exception.

A real use case had three LEDs and a 12 keys matrix EOZ Clavier S.series, 12 touches. Imagine
the hardware set-up as figure 9 without the breadboard and logic analyser in in a flush-mounted
wall box.

The key matrix was directly attached to 7 GPIO, see listing for the concrete set-up. Single or
multiple key presses were determined by a common algorithm. Its seven steps according to the
seven scan lines defined in the keyMatrix structure were put in the 1ms cycle.

#define ROW123 PIN37

#define ROW456 PIN35

#define ROW789 PIN31

#define ROWa0h PIN33

#define COL147a PIN40

#define COL2580 PIN38

#define COL369h PIN36

#define NoCols 3 // number of columns

#define NoRows 4 // number of rows in key matrix

Raspberry for remote services 54 Albrecht Weinert

static keyMatrix thePad = {

 .noCols = NoCols, .noRows = NoRows,

 .colRow = {COL147a, COL2580, COL369h, // noCols + noRows,

 ROW123, ROW456, ROW789, ROWa0h},

 .keyVal= { // [rowInd * noCols + colInd]

 '1', '2', '3',

 '4', '5', '6',

 '7', '8', '9',

 '*', '0', '#' },

}; // thePad

Listing 9: Defines and structure for exemplary12 keys matrix EOZ Clavier S.series

The device's IO was controlled by a next tier system via Modbus. This general approach of using
Raspberries as TCP/IP attached remote subsystems calls for a PoE solution.

LEDs directly driven by GPIO pins, of course, need a resistor of about 270 Ω and the pad drive
strength can be reduced down to 8 mA.

For all the Pi GPIO pins it is essential to keep the voltage (Upin) in the range:

0V <= Upin <= Ub <= 3.3V

where Ub is the processors actual supply voltage (Pins 1 & 17). For binary inputs best use
contacts (as in fig. 9, page 53) or open collector/drain transistors respectively optocouplers to
ground (pins6, 9 &c.). By enabling the input pin’s pull up resistor you need no extra components.

 Speakers and beepers

Piezo speakers should get a series resistor of e.g. 47 Ω, too. The drive strength may be set to
2 mA. Without resistor, one may observe spikes when applying voltage to the speaker, generated
by its mechanical (resonance) vibrations. Magnetic speakers must be 200 Ω, with series resistors,
when directly attached to one or two (push-pull) output pins.

For generating a tone one may use the gpio library's ability of “PWM at every pin, by setting the
desired frequency and turning the tone on by PW=50 % and off by 0 %:

#define PIEPS PIN12
 set_PWM_frequency(thePi, PIEPS, 400);
 set_PWM_dutycycle(thePi, PIEPS, 128); // PW 50% → tone
 :::::
 set_PWM_dutycycle(thePi, PIEPS, 0); // PW 0% → silent (or output off)

Using speakers directly controlled by GPIO brings two problems
 ● generating the tone frequency by software either directly or by hardware or library

PWM may eat resources or may bring problems with seldom used and hardly tested
library functions,

 ● depending on the surrounding and the speaker the tones may be just or hardly audible.

The last point may be healed by amplification instead of using a GPIO as power source – in
simple cases one n-channel MOSFET alone may do the job.

Piezo buzzers, on the other hand, contain a fixed frequency generator circuitry and a piezo speak-
er of fitting resonance. With low electrical power – as deliverable from a GPIO – they can be quite
loud. This solves both problems. On the other hand one has the fixed frequency, usually in the
2..3 kHz range. Nevertheless most type can very well by "on-off-modulated" up to about 600 Hz,
allowing some distinguishable sound effects.

Part III 55 Albrecht Weinert

 Relays

Relays are one way to handle remote actors, high power and to provide insulation.
But, you hardly find 3V relays with >= 200 Ω coil resistance. And even if so
 ● the contact load of those very low power relays to control a three phase

motor switch or three pole contactor and
 ● you need protective (diode) circuitry for Raspberry GPIO forbidding simple

direct attachment in the end.

For switching some "real" power by GPIO one has to use either
 ● solid state relays with optocoupler isolated control input or
 ● use transistor circuitry to switch relay coils,
 ● ideally isolated by optocoupler input.

Fig. 10: Eight relays module 10A
The break out board is used for attaching test equipment
(logic analyser). It is omitted in a production system, of course.

Raspberry for remote services 56 Albrecht Weinert

The latter solution comes quite handy in (semi-) professional modules, like in figure 9, page 53.
Figure 10 shows a module with eight 5 V relays, each well controllable by Raspberry's GPIO. The
separate 5 V supply for the relays may come from a separate source, or also from Raspberry's 5 V
power supply including PoE. So in the end one has 11 short female / female pin to pin connections:
Gnd, 3.3 V, 5 V and up to eight GPIOs between the Raspberry's 40 pin connector and the relay
module (omitting, of course, the experimental break out board used in figure 10).

Figure 10 shows an eight relays module with 10 A changeover contact 250 V~ or 30 V=.*)
Obviously it has one status LED per relay powered by the 3.3 V side (OK). These LEDs are red,
which violates a rule: In all professional process control standards red means error/fault.

Besides this “red light sin” and besides being "no name and no documentation" the module is more
than OK for less then 10 €. As the controller side and the 5 V relay supply have, alas, common
ground (in this example), the optocouplers seem nice overkill (no circuit diagram available). And as
a surprise in this undocumented case the 8 control inputs are low-active.

Similar higher power relay modules, best with 12 V coil supply, are also available and have been
used in production systems.
Hint *): We recommend NOT to use a relay like the ones in figure 10 promising 250V * 10A~ load for a
230V~ load of some 100W or more. In that cases we use a DIN rail contactor with an interference
suppressor (RC-unit) on its coil.

 Power transistors

N-channel power MOS-FETs or npn Darlington transistors or Darlington arrays may be used as
(open drain, open collector) N-switches. The transistors would have to be placed near the
Raspberry and can be connected directly (gate, array input) or via a fitting resistor (base) with a
GPIO pin. (Load M and Raspberry's Gnd have to be the same than.)

Depending on the transistor / array type and a suitable supply and grounding layout, the loads may
be in the range of 400mA ..10A and up to 60V. The loads and or their supplies can be placed quite
separated from the Raspberry.

Note: There are (probably Chinese, totally un-
documented) single power MOS-FET modules
offering a red LED to signal on (nice, except the
red) but featuring no current or temperature pro-
tection at all. Under certain circumstances, this
might be acceptable.

Nevertheless, most power MOS-FETs, as the
IRF520, need >= 4 V gate voltage to switch fully
on. That a 3.3 V powered µC cannot deliver! Fig. secret: Chinese module's circuit diagram

Replacing the power MOS-FET by a small lo power “signal” one (if sufficient) heals the switching
problem. And the 100 Ohm gate to source resistor and the LED can / should be omitted or made
larger if gate on voltage is critical.

 Hardware for serial communication – RS485 (232)

As the Raspberry Pis 3 and 4 have 4 USB, Ethernet, WLAN and with some extra software/configu-
ration even Bluetooth, there's seldom need for extra communication modules. One exception may
be Modbus (page 33) over RS485/323 often found in quite interesting equipment, like heat pumps,
gas ovens and "smart" power meters, to name just a few as well as EPROM programmers.

Many DIN rail-mounted one or three phase energy meters come with a so called S0 bus. That's
just an optocoupler or switch output giving 300..1000 (as configured) 100 ms closures per kWh.
These may be observed by Raspberry's GPIO input with pull-up and counted allowing seldom
energy consumption updates and seldom and coarse non-equidistant average power samples.
Note: The so-called S0-"bus" is a good example of transferring century old technology's solutions without
any cogitation to a new one: It's just counting and stopwatching the Ferraris wheel – but without being able
to see the energy flow direction / sign of power. Do NOT use S0 if the meter in question offers Modbus.

Part III 57 Albrecht Weinert

Better electronic meters offer a real bus connection, usually at a slightly higher price. And, usually
in this and some other fields, that will be Modbus over RS485or seldom RS232. In the exemplary
case of power meters this gives precise and actual measurements of voltage, current, frequency,
active and reactive power, overall consumption and often much more.

In our context, a process control set-up with those devices would be a RS485 bus with the Rasp-
berry as Modbus master / client and one or many of those devices as Modbus slave / server.

RS485 is a serial differential 1..5V two wire serial link, half-duplex link allowing one master and
multiple slaves. RS232 is a full duplex +-12V two wire (send and receive) serial link allowing just
two devices. Both use 8 bit UART bytes + start and stop bits. To get the RS485 or the RS323
hardware signals with their respective signal levels and meaning from a UART’s TTL one can
 ● attach a TTL to RS485 / RS323 converter to Raspberries standard serial link:

UART: TxD = GPIO14 = pin8; RxD = GPIO15 = pin10 like that shown in figure 11, or
 ● omit the UART and use an USB to RS485 / RS323 stick (not considered here *)).
Note *): The USB stick solution on a Pi is commonly reported to bring driver problems and, if finally
brought to work, causing resource conflicts and system crashes. The reason is Raspberry's USB link
already being overused / misused for other build-in USB to XYZ converters.

Hence, one would stick with Raspberry's standard UART (pins 8 and 10). Besides having to deal
with the application/Modbus related tasks, we have to face two problems:
 ● The sheer simple usage of this standard UART is more difficult than it should really be;

 see “Serial impertinences” below.
 ● With the half duplex, multiple slaves RS485 only: The TTL to/from differential signal

 converter (chip, MAX485, e.g.) needs a transmit enable (TE) signal.
 Note: On the full duplex RS232 send and receive are separate signals/wires.

When having the UART working, the TTL to RS485 solution as such is quite simple. In a minimal
form, a MAX485 IC and three resistors would do it. Little modules of that simple kind are offered for
less than one Euro. Do not confuse those with the much better module shown in figure 11.

Problem with the minimalistic aproach “extra GPIO output for TE” (not figure 11) is: One is left
alone with task to generate/program the "transmit enable" signal (= "DE" on MAX485).

As we have logically a one wire half-duplex bus, a sender must
 ● apply "transmit enable" before the first start bit of its (Modbus) telegram and
 ● remove "transmit enable" very shortly after the telegram's last stop bit.
Note: “Receive enable” might be the inverse of "transmit enable" or – usually better – always on.

The suggesting idea of using an extra GPIO pin for DE is naive:
 ● we would have to modify the drivers respectively the Modbus library at every point,

where the sending of a telegram would start.
 ● And while getting the start (even if error prone and killed by library updates) would

be feasible, hitting the telegram's end usually evolves to a not solvable problem.

In the end, pure hardware solutions generating the DE signal from TxD are the most simple ones,
and, when well made, totally reliable. There are modules of that kind, just translating RxD/TxD
to/from RS485-A&B; see figure 11. Besides doing the TTL to RS845 transmission line (A&B)
translation by a MAX485 IC (with auto DE) for about 10 €, with a fully reliable DE automatism it
brings all covered GPIO and supply pins to extra connectors. Hence other (process) IO can still
easily be attached.

This “forwarding of covered GPIO” should be taken for granted but is not. There are “shields” with
the 40 pin connector using supply and two IO – and burying all else.
Figure 11, page 58, shows this "GPIO forwarding" for a relays module as example.

Remark: In all our Modbus applications we used the module shown in figure 11. A version with
two sets of “A, B, Gnd” screw clamps instead of the never used sub-D would have been ideal.
The RS323 version of the module very much look alike figure 11 and the sub-D connector is quite
common here; we use this variant, too.

Raspberry for remote services 58 Albrecht Weinert

Fig. 11: RS485
module with automatic DE (for MAX485), i.e. transmit enable as well as
“forwarding” the GPIO pins covered by the module, used in this example for relays

 Serial impertinences

Using Pi’s standard UART (GPIO pins 8 & 10) brings a lot of pitfalls and crashes (making it a bit
hard not to assume evil intention). Using this UART has two pre-conditions:

 A) a1) Enable the serial interface and a2) disable serial console by raspi-config and
a3) add enable_uart=1 in /boot/firmware/config.txt formerly
/boot/config.txt .

 B) In your software use the right device name. This, in Linux, is the name of a pseudo file
in directory /dev/ .

Disabling the serial console (a2) seems to require disabling the serial interface (not a1), too, and
re-enabling it (a1) afterwards. Don’t forget / check a3). Every (sub-) step seems to require reboot.
A) or a part of it was seen to be killed, probably by OS updates or installations.

Part III 59 Albrecht Weinert

Choosing the right device name is, of course, essential. One would expect a UART present at the
same pins on all Raspberry Pi types and available on all Raspbians and predecessors should get
the same name in all history. But over the time we had to use /dev/ttyAMA0, /dev/ttyS0, /dev/tty,
dev/serial0, /dev/serial1 and more.

You may get stupidly long list of candidates by
dir /dev/ | grep tty
and the check probable ones by
 stty < /dev/ttyS0
speed 9600 baud; line = 0;

The example output is a hit, seeing “permission denied” is a miss.
We had a functioning (hard-coded) /dev/serial0 being killed (by updates?) and to be replaced
by /dev/ttyS0 *) or other such changes in a lot cases to be detected just by log files reporting
communication / Modbus errors.
Remark*): Really tty = teletype? Which century are we in?

Fig. 12: PoE splitter 5V, 2..4A

PoE – power over Ethernet

Switches, a key matrix in our example, low power LEDs and speakers / beepers and the Pi camera
are peripherals one may use without extras hardware interfaces, often called shields. A Raspberry
with such direct attached IO is put at its place of action and often controlled via LAN. Then getting
the 5 V, 1.3 A is an extra complication, often underestimated. IEEE 802.3af Ethernet switches can
provide power over Ethernet (36..57 V, up to 25 W). An on site step down converter then provides
the 5V.

IEEE 802af splitters to "LAN without power" and "5V on microUSB", see figure 12, are on purchase
for about 13 €. We have some of those in 24/7 use without any problems. And do not use non
IEEE “solutions” without converter to feed the 5 V from the other end of the LAN cable.

Warning on Raspberry’s own PoE:
Raspberry Pi3+ (the “+” is new), the Pi4 and the Pi5 promise PoE, but they have not. It requires a
special extra module, as expensive as a Pi 3, and an extra patch cable from the bulky module to
the Pi. Hence, the P4 PoE solution is in no way better and more expensive than the figure 12
approach.
Note: Modules of the kind show in figure 12 are also available with a USB-C power supply connector for
the Pi 4 and 5 as well as 12V output for other purposes.

Warning: For a Pi5 the standard 5V, 2.4A is not sufficient. Use a 4A type.

Raspberry for remote services 60 Albrecht Weinert

Communication

For Raspberries, the natural way to communicate with companions on the same process control
tier, with servers on higher tiers or with HMI systems is IP via LAN or WLAN (best private).
Note: For micro-controllers, like e.g. most Atmel AVR boards, this is not their “natural” way.

 Protocols

(W)LAN and TCP/IP communication is an integral part of Raspberries and most available OSs,
including Raspbian lite and the like. A whole bunch of protocols, applications and libraries is avail-
able – from start or after a bit of apt-getting. This includes ftp, http, SCP, SSH, Telnet, rlogin and
more.

For process control communication (mostly of IO values and usually time critical) one might be
tempted to write own binary protocols. On base of the GCC socket library (sys/socket.h etc., [63]),
this can be done. Often it's wiser to use a standard protocol, like Modbus or MQTT.

1-wire

1-wire is a bus and protocol specification allowing several IO devices attached to one IO pin. For
one 1-wire bus on a Raspberry the default is GPIO04 (Pin7). Another pin may be configured as
well as multiple 1-wire buses. But it is good practice to stick to the default, when feasible.

Fig. 13: Robust 1-wire temperature sensor
 -40...25°C , stainless steel
wires black: ground; red: +3.3V
optional supply; yellow: signal

1-wire devices do have a Vcc pin for 3..5V; 5V is allowed even when the bus is limited to 3.3V. By
providing a 4K7 pull up resistor to 3.3V one may even omit the Vcc wire to the devices; they can
live from the "One" bus wire alone. This feature is called "parasite power" and done by feeding an
internal Vcc buffer capacitor by both the external Vcc pin and the I/O bus pin via decoupling
diodes. Every 1-wire device gets a unique factory 64-Bit registration number/address starting with
a family/type code (0x28 for our thermometers). If a service person exchanges a defect 1-wire
thermometer you have to change an address in your code.

Available 1-wire ICs respectively devices are
 ● DS1822 thermometer -40°C..+125°C; 1mK resolution, accuracy 2K; 0x28
 ● DS18B20 thermometer -40°C..+125°C; 1mK resolution, accuracy 0.5K, see fig.13 0x28
 ● DS2430 small EEPROM 0x14
 ● DS2408 8 very small power I/O pins; input or open drain 0x29
 ● DS2413 2 very small power I/O pins; input or open drain 0x3A

For process I/O with Raspberries the last two, "digital IO via 1-wire", are not attractive. Better use
GPIO directly or have a ESP8266 module do it via MQTT. And here would be no use case for an
extra EEPROM as we can hibernate data on the SD-card in the OS's file system.

With Raspberry's lack of analogue input, the 1-wire temperature sensors in all their variants may
come very useful. One can have the cheap naked IC as well as a device with 1..5 m cable sealed
in a stainless steel tube fitting in the standard thermometer inlets of industrial tanks. When heating
water with surplus solar power, e.g., one should read the temperature for safety and comfort limits.

1-wire devices are accessed by Linux's device as file approach, the behaviour being implemented
in kernel modules (.so files). From the application's point of view this approach is orthogonal to the
"use I/O pins directly or driver software approach". To make it happen, i.e. have the files and the
kernel modules for 1-wire + thermometer available, we have to (sudo) modify two configuration
files. In /boot/config.txt (old Raspbian) or in /boot/firmware/config.txt add

dtoverlay=w1-gpio # default GPio4-pin7 otherwise:dtoverlay=w1-gpio,gpiopin=x

And in /etc/modules add

w1_gpio
w1_therm

Part III 61 Albrecht Weinert

After re-boot one 1-wire is ready on the default pin *1). When a sensor is connected find it by
dir /sys/bus/w1/devices

lrwxrwxrwx 2024-10-19 w1_bus_master1 -> ../../../devices/w1_bus_master1

lrwxrwxrwx 2024-10-19 28-0113173ecfcc -> ../../../devices/w1_bus_master1/28-0113173ecfcc

lrwxrwxrwx 2024-10-19 28-0113175b35bf -> ../../../devices/w1_bus_master1/28-0113175b35bf

lrwxrwxrwx 2024-10-19 28-6fb4d443009b -> ../../../devices/w1_bus_master1/28-6fb4d443009b

Here 28-0113173ecfcc points to a thermometer's directory named its unique serial number. We
recommend to resolve the symbolic links *2) down to the thermometer's file w1_slave for a real
time application.

A read of this "file" by code or command
 cat /sys/devices/w1_bus_master1/28-0113173ecfcc/w1_slave
reveals an actual measurement as a two line text:

57 03 4b 46 7f ff 0c 10 42 : crc=42 YES
57 03 4b 46 7f ff 0c 10 42 t=53437

If the first line ends with YES the last number in the second line is the temperature in m°C, that is
53.4°C in the example. If the file isn't readable or if YES is not on its position consider it an error.
Note *1 : If a GPIO is thus assigned to a kernel modul, never touch, configure, read nor write it directly.

 The pigpio(d) library / daemon promises not to do so when not explicitly requested by user code.
Note *2 : Do not let time critical code follow symlinks. It's quite a task and probably not optimised away.

Real time

Every server doing work for others and every system doing process IO does so under timing re-
quirements. These requirements should be well defined, best clearly documented with consistent
numbers and units. In some fields of application and communities much of it may be considered as
implicitly clear, be it by the industry's standards or by properties of the usual standard products
seen as not disputable *).

If someone with PLC background says “someThingX is done in the 1ms cycle” following is implied:

 ● there is a trigger event by the underlying runtime every 1ms “exactly” … well ±
 ± accuracy (timing oscillator / source, short time)
 ± jitter (variability of delays/latency)

 ● there are 86.400.000 such trigger events per day “exactly” … well ±
 ± accuracy (long time; can sometimes be made better than short time value)
 + exactly 0 or exactly 1000 events per leap second (Google, Oracle & others: 0)

 ● “someThingX” will run at every such trigger event “exactly” … well ±
 + 0..max delay/latency (meaning max. .. later but never ever too early)

We have “real time” when all those times and intervals are specified to the application's require-
ments and “hard real time” when one occurred violation is to be considered as application failure.
While the absolute numbers are important the “hard” property has, per se, nothing to do with
speed. You may replace 1ms by 1s in our mental example and relax other requirements but con-
sider not having (86.400 + number of leap seconds) runs per day as a total failure.
It may be astonishing how “hard” that can be in some environments.

Wanting PLC / cycles and with a Raspberry Pi3 / Raspbian lite doing just process IO and related
communication we can well implement 1ms cycles. Going faster might work but would be daring.
Note *) on common process IO standards: The same is true for hardware, electrical signals, maximum
ratings of IO, EMC etc. Most sold IO extensions, shields etc. are totally inadequate in this respect.

Raspberry for remote services 62 Albrecht Weinert

 Absolute timing

The approach in our very first LED blink examples (listing 2, page 22, e.g.)
do something
delay (relative from now)
do something
delay (relative from now)
… and so on

never gives an exact timing. The basic recipe to start the “do something” at exact intervals relative
to one start point in time is to use absolute time steps as supported by listing 6's functions.

/* Absolute timer delay for the specified number of µs
 *
 * @return sleep's return value if of interest (0: uninterrupted)
 */
int timeStep(timTv * timer, unsigned int micros){
 timeAddNs(timer, (long)(micros) * 1000); // timer += micros
 return clock_nanosleep(CLOCK_ABS, TIMER_ABSTIME, timer, NULL);
} // delay(unsigned int)

/* Absolute timer initialisation
 *
 * This function initialises the time structure provided.
 * @param timer the time structure to be used (never NULL!)
 */
void timeInit(timTv * timer){
 clock_gettime(CLOCK_ABS, timer);

} // timeInit(timTv *)

Listing 6: Absolute time steps; excerpt from weRasp/sysUtil.c

This is also the base idea to get PLC like cyclic tasks. Here the execution time of “do something”
including all jitter and latencies and considering it's CPU/core usage must be shorter than the
(next) timing step.

 Latency and accuracy

Of course, it is of no avail to offer 1ms cycles for process control, when the runtime's latency (in the
sense of delays on signals) is in the same order of magnitude or worse. One common command
line tool to check latency is cyclictest. Get it by:

sudo apt-get install rt-tests

and run it by e.g.

sudo cyclictest -l100000 -m -n -a0 -t1 -p99 -i400 -h400 -q

After some patience on a Raspberry Pi3 with process and some communication load we get a
typical result like

Total: 0001000000
Min Latencies: 00009 # observed 4...12µs
Avg Latencies: 00012 # observed 11...13µs
Max Latencies: 00062 # observed 70..118µs
Histogram Overflows: 00000

The tool and its options as well as the interpretation of the results are non-trivial. Anyway, running
the same test again will give comparable results on different run-times and loads. Experimental
outcomes are:

Part III 63 Albrecht Weinert

 ● A well configured (specialised, single purpose, single use) PiOS lite on a Pi3
is suitable for hard real time process control and 1 ms cycles.

 ● A graphical (non lite) OS in all our use cases never was and never will be.
 ● Using interrupts may also overthrow predictable / acceptable latencies and kill

inter thread co-operation. Refrain from using them.

The accuracy of the 1ms cycle may very well measured by precise logic analyser observing
outputs by the 1ms cycle and derived longer ones (n * 100ms) over a long period. In one case we
observed an hour being 144 ms too long (~3.5 s/d). By (excerpt)

 absNanos1ms = 1000000 + vcoCorrNs;

 while(commonRun) { // timing loop in main thread
 timeAddNs(&cyc1msEnd, absNanos1ms); // 1 ms time step
 clock_nanosleep(CLOCK_ABS, TIMER_ABSTIME, &cyc1msEnd, NULL);
 if (++msTo100Cnt >= 100) {

with the signed byte vcoCorrNs set to -40 we improved the accuracy by 2 orders of magnitude.
This correction by a calculated fixed value worked very well over many days of uninterrupted use.
So we can conclude this Pi3's quartz stability being excellent while the accuracy could be better.

Of course, this “hand-made” correction value is no practical solution for wide use. vcoCorrNs
should be automatically determined by a phase locked loop (PLL) “voltage controlled oscillator”
(VCO) algorithm against a precise time source, like NTP (available) or DCF77 (extra hardware).
Note: In the (latest) Jessie distribution CLOCK_REALTIME and ABS_MONOTIME's clock will be NTP tuned.
Own inventions as with earlier Jessie’s (or libs) aren't required any longer.

 Cycles and threads

For PLC like cyclic execution we offer an 1 ms, 10ms, 20 ms, 100 ms and 1 s cycle by library and
run time support organising the manager (supplied) as one thread. The cyclic tasks as well as
other event triggered ones will have be supplied as user threads.
Note: In a minimal runtime for AVR µControllers we based a similar solution
(proven 24/7 since over 9 years) on Adam Dunkel's protothreads.
As protothreads are well suited for GCC, they could have been used too. But with full grown Linux
runtime on a multi-core processor it's strongly recommended to use the runtime's own threading
(pthreads) and signalling system instead. See sysUtil.c and sysUtil.h.

Threading and synchronizing

As most process control must handle multiple asynchronous tasks we utilise Linux threads for
 ● several cyclic tasks
 ● a central task for organising all timing, i.e. organising

 ● 1ms and 100ms cycles and multiples of it as well as
 ● time and date

 ● all else tasks the application in question requires.

The main() method will have to parse arguments, provide all necessary resources and make and
start all all those threads. It may serve as one of the threads – or just sit suspended waiting on the
other threads end, as show in this excerpt:

int main(int argc, char * * argv){
 ::::::
 for (;;) {
 ret = getopt_long (argc, argv, "h?v", longOptions, &optIndex);
 :::::
 } // for over options
 ::::
 if (theCyclistStart(290)) { ::::: } // start the central timing thread
 on_exit(onExit, NULL); // register exit hook

Raspberry for remote services 64 Albrecht Weinert

 signal(SIGTERM, onSignalStop); // register signal hook
 :::
 signal(SIGQUIT, onSignalStop);
 ::::
 ret = pthread_create(&threadRS485Mod, NULL, rs485ModThread, (void*) NULL);
 ::::
 ret = pthread_create(&threadRelays, NULL, relaysThread, (void*) NULL);
 :::
 if (theCyclistWaitEnd()) { ::::::: } // wait for the other threads to end
 :::::

} // .main(int, char * *)

For full details see the project files sysUtil.c, sysUtil.h &c..

Preventing two or more threads to enter critical code – critical mostly by using common variables /
structures or other resources – is done by a common mutex guarding the critical code:

 int ret = pthread_mutex_lock(&comCycMutex); // under lock
:::::: // the critical code
 int ret2 = pthread_mutex_unlock(&comCycMutex); // release lock

Under such mutex lock a thread may wait (optionally with timeout) for a signal from another thread.
The wait call implies an unlock and re-lock for the (necessarily) used mutex:

 int ret = pthread_mutex_lock(&comCycMutex); // under lock
:::::: // there may be optinal critical code before and after the wait call
 ret = pthread_cond_wait(&cycTask->cond, &comCycMutex); // unlock / lock
 int ret2 = pthread_mutex_unlock(&comCycMutex); // release lock

Under the same mutex lock another thread may send the signal to one or all waiting threads:

 int ret = pthread_mutex_lock(&comCycMutex); // under lock
 ret r= pthread_cond_broadcast(&cykTask->cond); // wake threads; unlock / lock
 int ret2 = pthread_mutex_unlock(&comCycMutex); // release lock

Using this schema detailed in the example, threading and the necessary locking, synchronising
and signalling is almost as easy as with Java. Limitations with Raspian are no pthread_yield() and
no working thread priorities. The first, if needed, may be substituted by sched_yield() and the
priorities by fine granular organising of the process control tasks.

Co-operating applications

Besides the cyclic and organisational tasks (threads) a process control application may have to
handle HMI output, output to files (log, error, CSV etc.) and much more. Except for very small and
simple applications it seems logical to move some (or all) tasks not belonging to core (real time)
process control and process IO to other programs on the same computer.

On the minus or costs side are
 ● inter process communication
and implicitly or explicitly
 ● inter process synchronisation.

On the plus side we see
 ● the core process control / IO program getting smaller and
 ● kept as simple as possible,
 ● having less or ideally no start parameters (start options)
 ● being quite suitable to be started as background service (on boot)
and hence as depending on less resources (files, HMI and else)
 ● reliably running 24/7.

Part III 65 Albrecht Weinert

 Shared memory

To get to this separation of tasks in several co-operating programs we need a be-directional com-
munication from/to the process control program and all its helper programs. Here we could use
pipes, sockets or queues, e.g. But here the programs tend to be tightly coupled as consumer and
producer and one's failure may severely impede the other. For processes on the same machine
shared memory is the easiest way to avoid such hard dependencies and, as well, allow flexible
one-to-some relations.

A good approach for our (process control) use case is to organise all
 ● process input,
 ● process output,
 ● command input and
 ● status output
in one well-formed structure (of structures) called valFilVal_t in examples below. The structure
must be clearly defined (and hence centrally modifiable) in one .h-file common to the application –
i.e. all its processes respectively programs.

This common structure is held and actualised in shared memory. Each co-operating process may
work on the shared memory or on a local copy. The latter approach – doing the work on a local
copy and copying the parts needed / modified from / to the shared memory – is better in most
cases, as almost each access to shared memory will have to be done under mutual exclusion by
semaphore (not to be confused with above mutex) lock.

As the memory is shared between the cooperating processes they need a common handle or
name, which in Raspian is an arbitrary int (32bit). The same is true for the semaphore set. This
should be put in a .h-file common to the co-operating processes:

#define ANZ_SEMAS 3 //!< Semaphore set of three (3..10)
#define SEMAPHORE_KEY 0xcaef1924 //!< Semaphore unique key "Käfig24"

#define SHARED_MEMORY_SIZE 512 //!< Shared memory size 512 bytes
#define SHARED_MEMORY_KEY 0xbaffe324 //!< Shared memory key "Buffer24"

Now a program can make or get the shared memory by:

int shMemId = -1; // shared memory ID (initialised none)

static valsSharMem_t * valsSharMem = (void *)-1; //!< pointer to shared memory
 // ^ common data structure; ^ initialised as error/none

 :::::
 shMemId = shmget((key_t)SHARED_MEMORY_KEY, SHARED_MEMORY_SIZE,
 0666 | IPC_CREAT);
 if (shMemId == -1){ /* error handling */ }
 shMemPt = shmat(shMemId, (void *)0, 0);
 if (shMemPt == (void *)-1) { /* error handling */ }

This is best seen in more detail in the files weShareMem.h and weShareMem.c showing the
detaching and destroying of shared memory also.

Using the shared memory attached in a program is best done in one place by e.g.:

 memcpy(valsSharMem, &valFilVal,
 sizeof(valFilVal_t)); // put process values for other programs
 valsSharMem->copInCnt = copInCnt; // get commands from other program

Remark: An exception from guarding accesses by semaphores etc. to shared memory may be a single
64bit access. 64 bit accesses may/should be atomic on a Pi at least with a 64 bit OS. But beware: It has
to be a single read or write (no modify) and a variable in question must nor cross memory cell borders
(as my happen in multi-type data structures by compiler design). Double check everything if temped!

Raspberry for remote services 66 Albrecht Weinert

 Semaphore sets

Of course, this putting values to and getting values from shared memory has to be guarded by a
semaphore of a common (shared) set. Additionally, having put values for other programs can be
signalled to consuming programs by another semaphore of the set.

Mutexes are private to one program and act as binary locks between this program's threads.
Between threads they guarantee exclusive access to variables and other resources. And, under
such lock, signals between threads by (two) special functions to be used under lock only.

Contrary to mutexes semaphores
 ● come in a named shareable set to
 ● work between programs (processes) and
 ● are not binary but have a value range of 0..max (max is probably 96766 with Raspbian).

A basic usage of a semaphore is a binary lock when
 ● decrementing to 0 is the lock operation and
 ● incrementing (under lock!) to 1 is the unlock operation.

This works because the decrement blocks as long as the value is 0. The blocking hence waits until
another process unlocks. As this can be quite long or worst case for ever the lock operation can
and should be guarded by a timeout by using semtimedop() instead of semop(). See the handling
in weShareMem.h. and .weShareMem.c..

Such binary lock is used to guard the access to all co-operating programs shared memory using
one (number 0) semaphore of the common set.

Our second usage is signalling from program to a limited maximum number (say 9) of other pro-
grams by using other semaphores (1...) of the common set. The other programs wait for the signal
just as above by lock best with a generous timeout.

The signalling program (here under semaphore number 0 lock) uses semctl() (not semop()!) to set
the signal semaphore(s) to the maximum number (say 9) of other waiting programs. Then their lock
will immediately succeed. After a time agreed upon (say Tsig = shortest signal period / 6) the
signalling program uses semctl() to set the signal semaphores (1..) to 0. After a successful signal
lock the other programs will wait > Tsig before waiting on the next signalling. (Again see the
examples named above.)

Watchdog

A well written useful, cyclic etc. process control application should run 24/7 and normally will
without trouble. But from time to time (about every three months in one of our former 2017 set-ups)
it crashes. *) With few events the causes aren't easy to investigate. But always, good operation
could be resumed by resetting the PI manually. And reset will bring well-designed process output to
safe state.
Note *): After some system and library upgrade rounds this mystic freezing was completely gone by

summer 2018. But nevertheless:
 With cyclic / real time process control a watchdog and a reliable reset behaviour is a must!

As it is good practice in process control, this rescue reset should be done by an OS independent
HW watchdog when the process control program's cyclic operation ceases. In our set-up we'd
trigger such watchdog in every other run of the 1-s-cycle.

Luckily, the Pi's BCM processor has such watchdog, which is exposed under Linux as a device or
pseudo file (just like the 1-wire approach). By dir /dev/watchdog we see:

crw------- 1 root root 10, 130 2018-08-16 17:17 /dev/watchdog

Writing any character except 'V' to /dev/watchdog will trigger it, causing a reset after 16s, when not
re-triggering it within this interval. Hence, triggering every 2 s, as said above, will fit. Writing a 'V'
will disarm the watchdog. The process control program would do this at normal shutdown and
after (!) bringing all process output in idle (off) state.

Part III 67 Albrecht Weinert

As seen from the dir above, only root can write the watchdog device after every system start. As
we won't sudo run the process control we'll have to
sudo chmod a+=rw /dev/watchdog
before starting process control. Hence, we sudo crontab -e the following:

@reboot sleep 5 && chmod a+=rw /dev/watchdog

to have after reboot

crw-rw-rw- 1 root root 10, 130 2018-08-16 17:17 /dev/watchdog

Finally place (distribute) the following lines of code at the appropriate places

static int watchdog;

 watchdog = open("/dev/watchdog", O_RDWR); // in initProcessIO()

 write(watchdog, "V", 1); // disarm wachtdog
 close(watchdog); // and close at releaseProcessIO()

 write(watchdog, "X", 1); // in 1s cycle (every second time)

 GCI programs

As we did provide the basic CGI configuration for Apache 2.4, already, we just test it by a GCI
program written C (greet.c) to deliver a simple complete html page:

#include <stdio.h>
int main(int argc, char * argv[]){
 printf("Content-type: text/html\n\n"); // Every CGI delivery starts with
 printf("Hello, World."); // content-type followed by content
}

On the workstation cross-compile the program by
arm-linux-gnueabihf-gcc -o greet greet.c

and ftp the binary greet it to /var/www/myPi/cgi/ . Test is by browsing to http://myPi/cgi/greet.

sudo a2enmod cgi ## if not yet enabled

A more complete version of the greet.c program (listing 7) is to show the line of actions (and the ill
URL coding) in more detail.

/**
 * \file greet.c
 $Revision: 76 $ ($Date: 2017-12-01 19:43:45 +0100 (Fr, 01. Dez 2017) $)
 Copyright (c) 2017 Albrecht Weinert
 weinert-automation.de a-weinert.de

 cross-compile by:
 arm-linux-gnueabihf-gcc -o greet greet.c
 local compile by:
 gcc -o greet greet.c
 */

#include <stdio.h> // printf()
#include <stdlib.h> // getenv()
#include <string.h> // strstr()
#include <ctype.h> // isdigit()

Raspberry for remote services 68 Albrecht Weinert

#include <stdint.h> // uint32_t

int urlDecode(char * str){
 char *ptr = str;
 char c = * str;
 char c2 = *++str;
 for (; c; c = c2, c2 = *++str) {
 if (c != '%') { *ptr++ = c; continue; }
 char c3 = *(str + 1);
 if (!isxdigit(c2) || !isdigit(c3)) { *ptr++ = c; continue; }
 uint8_t v1 = c2 <= '9' ? c2 - '0' :
 (c2 <= 'F' ? c2 - 'A' + 10 : c2 - 'a' + 10);
 uint8_t v2 = c3 <= '9' ? c3 - '0' :
 (c3 <= 'F' ? c3 - 'A' + 10 : c3 - 'a' + 10);
 *ptr++ = (v1 << 4) | v2;
 str += 2;
 c2 = *str;
 }
 *ptr = '\0';
 return 0;
} // urlDecode(char *)

int main(int argc, char * argv[]){
 printf("Content-type: text/html\n\n");
 printf("Hello World!
\n");
 char * browser = getenv("HTTP_USER_AGENT");
 if(browser != NULL) {
 if (strstr(browser, "Chrome") != NULL) {
 printf("You're using Chrome like most of use.
\n");
 } else {
 printf("Your browser: %s
\n", browser);
 }
 } // got browser info

 char * query = getenv("QUERY_STRING");

 if(query != NULL) { // got query string
 printf("Your query: %s
\n", query);
 urlDecode(query);
 printf("Decoded : %s
\n", query);

 } // got query string
} // main(int, char * [])

Listing 7: Extended greet.c GCI example.

Apache's mechanics behind CGI are seen best by listing 7:
When a requested URL points into a directory configured with "ExecCGI" and the filename points
to an executable, Apache will
 ● provide request and browser information in an environment
 ● run the executable with that environment

(Note the ill coding of the query string at blanks or non-US-ASCII characters!)
and
 ● deliver the redirected standard output to the requesting Web-client.

Part III 69 Albrecht Weinert

From this course of action it will be evident that the CGI program in question will be run once per
request. Hence within itself it can't hold (session) state.

The little and the extended (listing 7) example delivers a (simple) complete web page. This allows
to dynamically generate pages.

More interesting is to have a static html page's JavaScript send commands (in the query string)
and get information in form agreed upon (plain text, XML, JSON or what ever) and use this data to
dynamically modify the page displayed. This approach is called AJAX, and every modern browser
on any platform can handle it. In our context its most important advantage is
 ● to reduce the communication load and
 ● put the load of filtering, rendering and displaying information away from

the little (Pi) machine to the client.

If this dynamically getting data happens often or regularly it's evident, too, compiled C as CGI
executable being better (for poor little server) than interpreted languages or worse scripts.

A point against PHP, and indirectly for C, is PHP's handling of Linux shared memory and sema-
phore sets being just buggy, while a C program wouldn't have the slightest problems in this
respect. One may view a C CGI as just another one in a band of co-operation control processes
co-ordinating themselves by semaphores and shared memory.

 Data exchange with AJAX & JSON

The C CGI program forwards the commands received and get its data from the process control
program as described above via shared memory with guards and signals by the common
semaphore set. For the data forwarded to the requesting web page plain text and JSON has been
used.

Getting Web data – cURL

The brethren of providing web content by C is getting it within a C program. One way is to install
and use the cURL library on the Raspberry (Raspbian) and on the (Windows, Eclipse)
development workstation. To install the library on the Raspberry do

sudo apt-get install libcurl4-openssl-dev

This brings the application curl, a wget equivalent, too. To locally compile and build a prepared
application do:

g++ getLocalWeaterData.c -o getLocalWeaterData -lcurlbd

To cross-work on the (Windows, Eclipse) development workstation ftp libcurl.so.4.3.0 from
/usr/lib/arm-linux-gnueabihf to C:\util\WinRaspi\arm-linux-gnueabihf\sysroot\usr\lib\. And in C:\
util\WinRaspi\arm-linux-gnueabihf\sysroot\usr\lib\ copy libcurl.so.4.3.0 to libcurl.so.

Also ftp all the complete directory curl from /usr/include/ to
C:\util\WinRaspi\arm-linux-gnueabihf\sysroot\usr\include\. Now you can compile and build on the
development workstation

arm-linux-gnueabihf-gcc getLocalWeaterData.c -o
getLocalWeaterData -lcurl

The executable made can be transferred to and run on a Raspberry with the cURL library installed.

Raspberry for remote services 70 Albrecht Weinert

Asterisk

Asterisk is a very powerful telephone system software. Using VoIP it needs no extra connection
hardware besides (W)LAN – and it can be installed and run on a Pi. It can also act as one or more
(software implemented) IP phones in the site's or home's telephone system (by Fritz!Box e.g.).

Such software phone may call one or more “real” phones on certain process events or alarms. A
common use case is bringing door bells to the garden by portable phones. A software call is
defined by a file, like e.g. /home/sweet/asteriskFiles/52call_tuer.txt:

Channel: SIP/629/**52
WaitTime: 19
Application: Playback
Data: /var/lib/asterisk/sounds/tuerklingel

This example calls number **52 for max. 19s and plays an audio “door bell” to the answering
phone. On Asterisk that call is initialised by copying the respective file in the “outgoing” directory by

cp /home/sweet/asteriskFiles/625call_tuer.txt

/var/spool/asterisk/outgoing/
or in C by:

system("cp /home/sweet/asteriskFiles/52call_tuer.txt /var/spool/asterisk/outgoing/");

Note: Do not use home made copying loops to put a file to asterisk/outgoing/ .

 Why not a “call VoIP” application

Just to call a phone once or twice a day, having the mighty Asterisk service running 24/7 on poor
little Pi seem sheer overkill and a small “just call VoIP once” command line application the better
choice. But in the end it was hard find usable ones and get them running. And (if working at all)
they were dead slow. Up to 8 s delay to call are not acceptable.

Although a sleeping Asterisk seems a much heavier burden than a sleeping Apache, repentantly,
we returned to Asterisk. On the other hand Asterisk never impeded the 1 ms process control cycle.
Listing 8 shows an exemplary Asterisk configuration file for this minimal use case.

[general]
allowguest=no
port = 5060
bindaddr = 0.0.0.0
qualify = no
disable = all
allow = alaw
allow = ulaw
videosupport = no
dtmfmode = rfc2833
srvlookup = yes
localnet=192.168.178.0/255.255.255.0
directmedia = no
nat = no

register=klingByPi:secret#@192.168.178.1/629
;Die Caller-ID wird bei Anrufen auf kompatiblen Telefonen angezeigt.
callerid=klingelPi <629>

[629]

Part III 71 Albrecht Weinert

type = friend
insecure = invite,port
nat = no
canreinvite = no
; FritzOS / Fritzbox phone **629 user, name, password and the Fritzbox IP:
authuser = klingByPi
username = klingByPi
fromuser = klingByPi
fromdomain = fritz.box
secret = secretPW
host = 192.168.178.1

dtmfmode = rfc2833
context = incoming
disallow = all
callerid= Klingel
allow = ulaw
allow = alaw
transport = udp

Listing 8: Asterisk's sip.conf.

So the good side of Asterisk is: This works reliably.

The bad side is: This trifle took hours of trial and error and search in “documentation” and forums.

The result – and where we are

We can handle Raspberry's GPIO pins in C programs.

We can handle a bundle of IO libraries pigpio being the most promising one. And pigpio(d) is the
only one we used for real process control applications in the end (and all others, including toys).

And we know how to cross-compile and cross-build from Windows (or Ubuntu) using make, Eclipse
and SVN there. With the make tool and some include file wizardry it is possible to integrate the
WinSCP.com file (Windows only) transfer to a target Raspberry in the automated make
processing.

That means with one make call we can compile, build and document a program and transfer it to
the target Pi.

C is still the lingua franca in embedded. On the other hand – under the same hard requirements
and restrictions – alternative languages should be tried and considered. The first choice would be
Java which has been experimentally used with some success; see [32].

Some actuators and sensors may directly connect to Raspberry's GPOI but often extra interfacing
IO hardware will be needed. Note: Years ago, we used and tried piXtend which might be disappointing in the light
of approach (putting all IO in an AVR slowly coupled to the Pi), price and promises. Nevertheless it opens the world of
Codesys and Web interfaces to slow process control applications.

Low price semi-professional relay and other modules enable the Raspberry to control actuators
with some power, including 230/400V equipment.

Modbus (via TCP IP and RS485) and MQTT enable more remote sensing and actuating. As MQTT
attached periphery we can use bought and/or self-programmed ESP 8266 (or ESP 32) devices.

Raspberry for remote services 72 Albrecht Weinert

For communication process IO and related data to/from small systems the quite old Modbus
protocol is still in wide use. On base of the libmodbus library we made our Raspberries Modbus
servers/slaves as well as clients/masters. With Modbus via RS485 we attach one to four smart
meters to our Raspberry and by RS232 a PV inverter.

With shared memory and semaphore sets we can have multiple (C) programs share data and
status with or send commands to a process control program running 24/7 as service.

Such co-operating (C) program can as well be a CGI program run on request by an Apache 2.4
web-server. By this we can put any graphical user interface imaginable by HTML (5) and CSS on a
user's browser in the process controlling Raspberry's LAN. Considering graphics on a Raspberry
detrimental to even modest real time requirements, process control HMI is to be done by a Web
interface via AJAX / GCI – and can very well be done so with acceptable response times.
 or on another machine.

We can use barcode and QR code scanners attached via USB

We can use an Asterisk telephone server on the same Pi to signal process events to arbitrary
phones directly or indirectly (Fritz!box) attached to the LAN.

And staying with C and the pigpio library we dug a little deeper on real-time, PLC like cyclic multi-
threaded execution and put such extra features in utility libraries.

The approaches described here allow real time applications like this in one Raspberry Pi3 or 4:

A home automation application featuring
 ● HMI via web interface (Apache 2.4),
 ● 2 smart three phase meters (RS485),
 ● five remote measuring and power switching devices (MQTT),
 ● three temperature sensors (1-wire) and
 ● a lot of locally attached binary actuators and sensors, i.e.
 relays, LEDs, buttons,
 ● fine grained heater power control by phase packet switching
 (using a solid state relay 100A/400V in the 20 ms cycle)
is running 24/7 for more than two years (after having an equivalent laboratory set-up for
considerably longer).

A simple door bells and openers monitoring and logging application using
 ● Asterisk on the same Pi to forward door bell rings to telephones and
 ● an Apache 2.4 on the same Pi to show the log files.).
To sample and filter the four optocoupler isolated AC signals we take 4 * 5 equidistant samples in
the 1ms cycle.

As said the C library used offers 1ms, 10ms 20ms 100ms and 1s cycles in a PLC like manner. It is
recommended not to enable and use more than three of them. Slower cycles can easily implemen-
ted by sub-dividing a faster one.
And as also said: Do not use a non-lite Raspbian or PiOS for real time process control in our
sense. A graphical OS with graphic and pointing devices attached is the dead of all timing. And a
graphical OS with graphic devices neither attached or used *) still kills the timing qualities the fast
cycles and timestamps.
Note *): Why the hell should one install a graphic OS when never having screens or mice?

 Isn’t it just stupid? ²)
Note ²): Well, yes, but not always. Non lite PiOSs offer some plug and play features. Putting a SSD

 or USB drive to a Raspbian lite is unpleasant.

Part III 73 Albrecht Weinert

 A p p e n d i x

Miscellaneous commands

This is more or less an anthology of useful and proven tips.

 List all visible WLANs

sudo iwlist wlan0 scan
sudo iwlist wlan0 scan | grep "Cell\|Frequency"

 Cell 01 - Address: 2C:91:AB:40:EA:14
 Frequency:5.26 GHz (Channel 52)
 Cell 02 - Address: 60:B5:8D:47:7D:55
 Frequency:5.18 GHz (Channel 36)
 Cell 03 - Address: 2C:91:AB:40:EA:13
 Frequency:2.437 GHz (Channel 6)
 Cell 04 - Address: 60:B5:8D:47:7D:54
 Frequency:2.462 GHz (Channel 11)

 Make consistent and comparable directory listings

Make a good file listing command command by:

alias dir='ls -lAh --time-style=long-iso'
To make it permanent and have some comfort and the usability of sudo with it, best add the
following in ~/.bash_aliases or in .bashrc (for one user):

alias dir='ls -lAh --time-style=long-iso'
alias diR='ls -lARh --time-style=long-iso'
alias sudo='sudo '

To have it for all users you may put it in a file /etc/profile.d/bash_aliases.sh instead.

 Determine Pi’s hostname
hostname

cat /etc/hostname
pi4play

 Change Pi’s hostname

sudo nano /etc/hostname

and reboot. At next login accept the new fingerprint. The change of the name per se is easy.
Getting along with the consequences may get the hard part: DNS server / router, filezilla settings,
scripted deployment (with make), … Any undetected use of the old name can cause trouble.

 Determine OS and version

lsb_release -a
cat /etc/os-release

PRETTY_NAME="Raspbian GNU/Linux 12 (bookworm)"
NAME="Raspbian GNU/Linux"
VERSION_ID="12"
VERSION="12 (bookworm)"
VERSION_CODENAME=bookworm
ID=debian
HOME_URL="http://www.debian.org/"

Raspberry for remote services 74 Albrecht Weinert

SUPPORT_URL="https://www.debian.org/support"

BUG_REPORT_URL="https://bugs.debian.org/"

 Determine Pi OS full vs lite

cat /boot/issue.txt

Raspberry Pi reference 2024-10-22

Generated using pi-gen, https://github.com/RPi-Distro/pi-gen,
 94f7acf599bd0fd119f523b5afefaccf7a7a1024, stage2

Here the answer is “stage2”. The meaning is: stage1 = very minimal system;
stage2 = our lite system; stage3 = base desktop system;
stage4 = standard system (would fit in 4G card); stage5: full desktop system with “all” programs.

 Determine Pi RAM size

free -ght
 total used free shared buff/cache available
Mem: 7.6Gi 189Mi 7.4Gi 3.5Mi 133Mi 7.4Gi
Swap: 199Mi 0B 199Mi
Total: 7.8Gi 189Mi 7.6Gi

Total/total 7.8GB in the example means a Pi with 8GByte RAM.

 Determine Pi type

cat /proc/device-tree/model

Raspberry Pi 4 Model B Rev 1.4
Raspberry Pi 3 Model B Rev 1.2s

 List installed libraries (best with | grep ….)

apt list --installed | grep libpig

WARNING (only with | grep): apt does not have a stable CLI interface.
Use with caution in scripts.

libpigpio-dev/stable,now 1.79-1+rpt1 armhf [installed,automatic]
libpigpio1/stable,now 1.79-1+rpt1 armhf [installed,automatic]
libpigpiod-if-dev/stable,now 1.79-1+rpt1 armhf [installed,automatic]
libpigpiod-if1/stable,now 1.79-1+rpt1 armhf [installed,automatic]
libpigpiod-if2-1/stable,now 1.79-1+rpt1 armhf [installed,automatic]

 See all groups a user (pius e.g.) is in

id pius

uid=1001(pius) gid=1000(sweet) groups=1000(sweet),4(adm),20(dialout),
24(cdrom),27(sudo),29(audio),44(video),46(plugdev),60(games),100(users),
102(input),105(render),106(netdev),995(spi),994(i2c)

 Add user to group
sudo adduser user group

 Remove user from group
sudo deluser user group

Use nano without syntax highlighting

nano -Ynone myfile.txt

https://bugs.debian.org/
https://github.com/RPi-Distro/pi-gen

Part III 75 Albrecht Weinert

 Get Pi’s hardware interfaces and pinout

pinout

Description : Raspberry Pi 4B rev 1.4
Revision : d03114
SoC : BCM2711
RAM : 8GB
Storage : MicroSD
USB ports : 4 (of which 2 USB3)
Ethernet ports : 1 (1000Mbps max. speed)
Wi-fi : True
Bluetooth : True
Camera ports (CSI) : 1

 ← left figure is pure ASCII art

For further information, please refer to https://pinout.xyz/

Raspberry for remote services 76 Albrecht Weinert

 Show all threads of a program
ps aux | grep rdGnBlink
sweet 1386 0.0 0.0 3440 1280 ? Sl Nov24 0:15 rdGnBlink

and with the pid (1386 in example) do

ps -T -p 1386
 PID SPID TTY TIME CMD
 1386 1386 ? 00:00:15 rdGnBlink
 1386 1389 ? 00:00:00 rdGnBlink

 Show queues (none in example) semaphores and sheared memory

ipcs

------ Message Queues --------
key msqid owner perms used-bytes messages

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x25baffe6 0 www-data 666 1024 1

------ Semaphore Arrays --------
key semid owner perms nsems
0x25caef19 2 sweet 666 3

 Stop / start / restart web server

sudo service apache2 stop
sudo service apache2 start
sudo service apache2 restart

 Act as Apaches user www-data

sudo su -l www-data -s /bin/bash

 Copy a file preserving its date

On Windows: Use robocopy instead of copy or xcopy
On Linux: cp -p sourceFile copiedFileWithTheSameDate

 Compare two files

On Windows: fc file1 file2
On Linux: diff file1 file2
On Linux: with visible report if equal: diff -s rdGnBlink rdGnBlink01

Files rdGnBlink and rdGnBlink01 are identical

 Determine recursively all files containing “text”

grep -r "modbus_connect" D:\eclipCe18-12WS\stephane\libmodbus\

Binary file D:\eclipCe18-12WS\stephane\libmodbus\/.git/index matches :::::
D:\eclipCe18-12WS\stephane\libmodbus\/docs/modbus_connect.md:int

modbus_connect(modbus_t *ctx);
::::
D:\eclipCe18-12WS\stephane\libmodbus\/src/modbus.c: modbus_connect(ctx);
::::
D:\eclipCe18-12WS\stephane\libmodbus\/tests/unit-test-server.c:

rc = modbus_connect(ctx);

Part III 77 Albrecht Weinert

 Limit search to specific files

grep -r --include=*.h "modbus_connect" D:\eclipCe18-12WS\stephane\libmodbus\
D:\eclipCe18-12WS\stephane\libmodbus\/src/modbus.h:

MODBUS_API int modbus_connect(modbus_t *ctx);

grep -r --include=*.c "modbus_connect" D:\eclipCe18-12WS\stephane\libmodbus\
D:\eclipCe18-12WS\stephane\libmodbus\/src/modbus.c:
 modbus_connect(ctx);
 :::::: 11 others :::::::
D:\eclipCe18-12WS\stephane\libmodbus\/tests/unit-test-server.c:
 rc = modbus_connect(ctx);

 Add line numbers

grep -rn --include=*.c "modbus_connect" D:\eclipCe18-12WS\stephane\libmodbus\
D:\eclipCe18-12WS\stephane\libmodbus\/src/modbus.c:193:
 modbus_connect(ctx);
 :::::: 11 others :::::::
D:\eclipCe18-12WS\stephane\libmodbus\/tests/unit-test-server.c:132:
 rc = modbus_connect(ctx);

 Show all threads of a program

ps aux | grep program ## get the pid 28344, e.g.

ps -T -p 28344 ## use the pid here; see main + the extra threads

 Check the availability of a (serial) device

stty < /dev/serial0

-bash: /dev/serial0: No such file or directory Output if device does not exist

speed 9600 baud; line = 0; Displays some infos if the device exists

-brkint -imaxbel

 List all configuration variables

getconfig -a
LINK_MAX 65000
PATH /bin:/usr/bin
CS_PATH /bin:/usr/bin
POSIX_ALLOC_SIZE_MIN 4096
PAGESIZE 4096
PAGE_SIZE 4096
 :::::: and more :::::::

 grep on Windows

Above examples on listing files containing obviously came from a Windows machine. It has grep
only because of ported Linux packages installed there.

where grep
C:\util\msys32\usr\bin\grep.exe

As grep on Windows is a ported Linux tool, all grep examples work on Linux, too.

Raspberry for remote services 78 Albrecht Weinert

Abbreviations

More abbreviations can be found in [29]'s Appendix.

24/7 24 hours on 7 days a week; uninterrupted service (by hardware or software)

A (as unit) Ampere

ABI Application binary interface; here the C-library interface to OS services

ACL Access control list

AJAX Asynchronous JavaScript and XML (or JSON en lieu de XML)

AVR microcip AVR (ex Atmel ARV) 8 bit microcontroller architecture

CGI Common Gateway Interface

CLI Command line interpreter/interface

CoDeSys Controller development system no-free IEC 61131-3 IDE for Windows

CRC Cyclic redundancy check, a polynomial division

CSS Cascading Style Sheets

CSV Coma separated value; a pseudo table format recognised by Excel, Calc and consorts

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System; also used in the sense of domain name server.

EIA Electronic Industries Alliance

FTP File Transfer Protocol; RFC1579

GPIO General purpose IO. The µP's IO pins that have no purpose for the Raspberry
nor for its OS, but kindly having been made available for other purposes on pin grids.

GUI Graphical user interface / graphical HMI

HMI Human Machine Interface (without political correctness formerly MMI)

HTML Hypertext Markup Language

ID Identity; in the sense of a domain's ID management

IDE Integrated development environment (like Eclipse)

imho in my humble opinion

IO Input and Output

IoT Internet of Things; devices with sensors and actuators connected via networks

IP Internet protocol

JSON JavaScript Object Notation

LAN Local Area network; here in the sense of just Ethernet

M2M Machine to machine

MMU Memory management unit

MQTT Message Queuing Telemetry Transport

MS Microsoft

Nb. Nota bene (Latin, Italian phrase): note well, important

NTFS NT File System; full featured file system with fine grained access rights, links and
all else used on all Windows NT inheritors

OASIS Organization for the Advancement of Structured Information Standards

Part III 79 Albrecht Weinert

OS Operating System; run time

P2P point to point, exclusive direct link between two communication partners

pigpio or pigpioD Pi GPIO daemon, see [61..63]

Pi OS Raspberry Pi’s standard operating systems, formerly known as Raspbian – Debian variant

PoE Power over Ethernet

PV Photovoltaic, solar power

PWM Pulse width modulation (of a rectangular signal of foxed frequency)

RAM Random access memory, also implies writeable

RDP Remote Desktop Protocol; from Microsoft

RFC Request for comment; internet standard

ROM Read only memory; storage for fixed values

RS232 or TIA-232, EIA-232 serial communication standard (1962 RS = recommended standard)
RS485 or TIA-485, EIA-485 serial communication standard (1983) usually half duplex, multipoint

sic! so, exactly so said/cited (even if unbelievable)

SD Secure digital memory card; interfaces and protocols by SD Assoc.

SPI Serial Peripheral Interface (shift register attachment protocol)

SSD Solid state disc, a disc drive made of non-volatile RAM

SSH Secure socket shell

SSHFS (remote) File system over SSH

SSL Secure Sockets Layer; former name of TSL

TIA Telecommunications Industry Association

U[S]ART Universal [serial] asynchronous receiver and transmitter

V (as unit) Volt

VoIP Voice over IP, protocol for telephones / telephone system on (W)LAN

W (as unit) Watt

WS workstation, often in the sense of PCs and laptops of all sizes

W10 MS Windows 10

W11 MS Windows 11

XML Extensible Markup Language

µP Micro-processor

References

We use identical reference numbers in [29 .. 33], hence some gaps.

[29] Albrecht Weinert, Ubuntu for remote services, Report, November 2016 – February 2019,
 weinert-automation.de/pub/ubuntu4remoteServices.pdf

http://a-weinert.de/pub/ubuntu4remoteServices.pdf

Raspberry for remote services 80 Albrecht Weinert

[31] Albrecht Weinert, Raspberry for distributed control, Report, April 2025,
This paper (the last actual version): weinert-automation.de/pub/raspberry4distributedControl.pdf

[32] Albrecht Weinert, Raspberry Pi GPIO mit Java — Java statt C, Java Magazin 1|2020,
pp.78-84, GIT .pdf jaxenter.de/java/java-programmiersprache-c-raspberry-pi-90176

[33] Albrecht Weinert, Raspberry for remote services, Report, May 2017 .. Oct. 2024,
This paper [31]’s predecessor a-weinert.de/pub/raspberry4remoteServices.pdf

[51] Raspberry Org, FTP, Tips on using SSHFS
 https://www.raspberrypi.org/documentation/remote-access/ssh/sshfs.md

[52] Raspberry Org, SFTP, Tips on using SFTP
 https://www.raspberrypi.org/documentation/remote-access/ssh/sftp.md

[53] Raspberry Org, SFTP, Tips on enabling WLAN by command line
 https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md

[54] Qube solutions, Linux Tools & Library for PiXtend – Manual for installation and use of the
pxdev-Package with Raspberry Pi and PiXtend (says nothing on library use)
V1.05, April 2017 http://www.pixtend.de/files/manuals/AppNote_pxdev_DE.pdf

[55] WinSCP, FTP [command line] client, documentation https://winscp.net/eng/docs/start

[56] Broadcom, BCM2835 ARM Peripherals, data sheet 2012
 https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

[57] Gert van Loo, QA7ARM Quad A7 core, Technical report on BCM2836, Rev3.4 2014
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/QA7_rev3.4.pdf

[58] Broadcom, ARM® Cortex®-A53 MPCore Processor, Rev. r0p2Technical Reference Manual
DDI0500D_cortex_a53_r0p2_trm.pdf (BCM2837 is Quad-core 64-bit ARM cortex A53 CPU)

 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500d/DDI0500D_cortex_a53_r0p2_trm.pdf

[59] Broadcom, ARM® Cortex®-A Series, Version 1.0, Programmer’s Guide for ARMv8-A
 http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf

[60] Shore, Chris, ARM, Porting to 64-bit ARM, white paper July 2014,
 https://community.arm.com/cfs-file/ ... /Porting-to-ARM-64_2D00_bit.pdf

[61] N.N., Joan, pigpio library – Download & Install, http://abyz.me.uk/rpi/pigpio/download.html

[62] N.N., Joan, pigpio library – pigpio C interface, http://abyz.me.uk/rpi/pigpio/cif.html

[62b] N.N., Joan, pigpio library – pigpiod C interface, http://abyz.me.uk/rpi/pigpio/pdif2.html

[63] Hall, Brian “Beej Jorgensen”, Beej's Guide to Network Programming – Using Internet Sockets
Version 3.0.21, 2016 http://beej.us/guide/bgnet/output/print/bgnet_A4_2.pdf

[64] Gordon Matzigkeit, Alexandre Oliva, Thomas Tanner, Gary V. Vaughan, GNU Libtool
Vers. 2.4.6, 2015 https://www.gnu.org/software/libtool/manual/libtool.pdf

[65] Modicon, Modbus Protocol, Reference Guide
PI–MBUS–300 Rev. J 1996, http://modbus.org/docs/PI_MBUS_300.pdf

[66] Modbus Org, MODBUS Application Protocol Specification V1.1b3, 2012
 http://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

[67] OASIS, MQTT V3.1.1 Protocol Specification, 2014
 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

[68] Rahmann, Leila F., Tutorial on Mosquitto and Paho, Eindhoven 2017,
 http://www.win.tue.nl/~lrahman/iot_2016/tutorial/MQTT_2016.pdf

[69] Mosquitto, The API documentation https://mosquitto.org/api/files/mosquitto-h.html

[70] Fairhead, Harry, Raspberry Pi IoT in C, Third Editiom, I/O Press 2024

https://mosquitto.org/api/files/mosquitto-h.html
http://www.win.tue.nl/~lrahman/iot_2016/tutorial/MQTT_2016.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://modbus.org/docs/PI_MBUS_300.pdf
https://www.gnu.org/software/libtool/manual/libtool.pdf
http://beej.us/guide/bgnet/output/print/bgnet_A4_2.pdf
http://abyz.me.uk/rpi/pigpio/pdif2.html
http://abyz.me.uk/rpi/pigpio/cif.html
http://abyz.me.uk/rpi/pigpio/download.html
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-52-01/Porting-to-ARM-64_2D00_bit.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500d/DDI0500D_cortex_a53_r0p2_trm.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/QA7_rev3.4.pdf
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://winscp.net/eng/docs/start
http://www.pixtend.de/files/manuals/AppNote_pxdev_DE.pdf
https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md
https://www.raspberrypi.org/documentation/remote-access/ssh/sftp.md
https://www.raspberrypi.org/documentation/remote-access/ssh/sshfs.md
http://a-weinert.de/pub/raspberry4remoteServices.pdf
https://jaxenter.de/java/java-programmiersprache-c-raspberry-pi-90176
https://a-weinert.de/pub/javaStattCraspberryPiGPIOmitJava.pdf
https://github.com/a-weinert/weAut
http://a-weinert.de/pub/raspberry4distributedControl.pdf

